
EDB Postgres Distributed for Kubernetes
Version 1

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-05-09T17:40:41

4
5
5
6
7
9

13
14
16
18
21
24
28
33
33
33
34
36
37
39
46
48
48
48
49
49
51
51
52
52
52
53
53
53
54
54
54
55
55
56
56
57
57
58
58
58
60
60

1 EDB Postgres Distributed for Kubernetes
2 EDB Postgres for Kubernetes Release notes
2.1 EDB Postgres Distributed for Kubernetes 1.0.0 release notes
3 Before you start
4 Use cases
5 Architecture
6 Installation
7 Quick start
8 Managing EDB Postgres Distributed (PGD) databases
9 Backup on object stores
10 Recovery
11 Security
12 Connectivity
13 Certificates
14 Client TLS/SSL connections
15 Declarative pausing and resuming
16 EDB private image registries
17 Predefined labels
18 PGDGroup parting
19 Red Hat OpenShift
20 Transparent Data Encryption (TDE)
21 Examples of configuration
23 API Reference
CertificateKeystores
CertificatePrivateKey
CertificateSpec
ConditionStatus
JKSKeystore
KeyUsage
LocalObjectReference
ObjectReference
PKCS12Keystore
PrivateKeyAlgorithm
PrivateKeyEncoding
PrivateKeyRotationPolicy
SecretKeySelector
X509Subject
PGDGroup
PGDGroupCleanup
Backup
BackupStatus
CNPStatus
CertManagerTemplate
ClientCertConfiguration
ClientPreProvisionedCertificates
CnpBaseConfiguration
CnpConfiguration
ConnectionString

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

61
61
62
62
63
63
63
64
64
64
65
65
66
66
66
67
68
69
70
70
71
72
72
73
73
74
75
75
75
76
76
77
77
78
78
78
79
79
80
80
81
81
81
81
82

ConnectivityConfiguration
ConnectivityStatus
DNSConfiguration
DiscoveryJobConfig
InheritedMetadata
Metadata
NodeCertificateStatus
NodeKindName
NodeSummary
NodesExtensionsStatus
OTELConfiguration
OTELTLSConfiguration
PGDGroupCleanupSpec
PGDGroupCleanupStatus
PGDGroupSpec
PGDGroupStatus
PGDNodeGroupEntry
PGDNodeGroupSettings
PGDProxyConfiguration
PGDProxyEntry
PGDProxySettings
PGDProxyStatus
PGDStatus
ParentGroupConfiguration
PauseStatus
PgdConfiguration
PreProvisionedCertificate
RecoverabilityPointsByMethod
ReplicationCertificateStatus
Restore
RestoreStatus
RootDNSConfiguration
SQLMutation
SQLMutationType
SQLMutations
ScheduledBackupSpec
ServerCertConfiguration
ServiceTemplate
ServiceUpdateStrategy
TLSConfiguration
TLSMode
VolumeSnapshotRestoreStatus
VolumeSnapshotsConfiguration
24 Supported versions
25 Known issues and limitations

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

1 EDB Postgres Distributed for Kubernetes

EDB Postgres Distributed for Kubernetes (PGD4K) is an operator designed to manage EDB Postgres Distributed (PGD) workloads on Kubernetes, with
traffic routed by PGD Proxy.

The main custom resource that the operator provides is called PGDGroup .

Architectures can also be deployed across different Kubernetes clusters.

Before you start

EDB Postgres Distributed for Kubernetes provides you with a way to deploy EDB Postgres Distributed in a Kubernetes environment. Therefore, we
recommend reading the EDB Postgres Distributed documentation.

To start working with EDB Postgres Distributed for Kubernetes, read the following in the PGD documentation:

Terminology
PGD overview
Choosing your architecture
Choosing a Postgres distribution

For advanced usage and maximum customization, it's also important to be familiar with the EDB Postgres for Kubernetes documentation, as described
in Architecture.

Supported Kubernetes distributions

EDB Postgres Distributed for Kubernetes is available for:

Kubernetes version 1.23 or later through a Helm chart
Red Hat OpenShift version 4.10 or later only through the Red Hat OpenShift certified operator

Requirements

EDB Postgres Distributed for Kubernetes requires that the Kubernetes/OpenShift clusters hosting the distributed PGD cluster were prepared by you to
cater for:

The public key infrastructure (PKI) encompassing all the Kubernetes clusters the PGD global group is spread across. mTLS is required to
authenticate and authorize all nodes in the mesh topology and guarantee encrypted communication.
Networking infrastructure across all Kubernetes clusters involved in the PGD global group to ensure that each node can communicate with
each other

EDB Postgres Distributed for Kubernetes also requires Cert Manager 1.10 or later.

About connectivity

See Connectivity for more information.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

https://www.enterprisedb.com/docs/pgd/latest/
https://www.enterprisedb.com/docs/pgd/latest/terminology/
https://www.enterprisedb.com/docs/pgd/latest/overview/
https://www.enterprisedb.com/docs/pgd/latest/architectures/
https://www.enterprisedb.com/docs/pgd/latest/choosing_server/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/

API reference

For a list of resources provided by EDB Postgres Distributed for Kubernetes, see the API reference.

Trademarks

Postgres, PostgreSQL, and the Slonik logo are trademarks or registered trademarks of the PostgreSQL Community Association of Canada, and used
with their permission.

2 EDB Postgres for Kubernetes Release notes

The EDB Postgres Distributed for Kubernetes documentation describes the major version of EDB Postgres Distributed for Kubernetes, including minor
releases and patches. The release notes provide information on what is new in each release. For new functionality introduced in a minor or patch
release, the content also indicates the release that introduced the feature.

Version Release date

1.0.0 24 Apr 2024

2.1 EDB Postgres Distributed for Kubernetes 1.0.0 release notes

Released: 24 Apr 2024

This is the first major stable release of EDB Postgres Distributed for Kubernetes, a Kubernetes operator to deploy and manage EDB Postgres
Distributed clusters.

Highlights of EDB Postgres Distributed for Kubernetes 1.0.0

The operator implements the PGDGroup custom resource in the API group pgd.k8s.enterprisedb.io . You can use this resource to create
and manage EDB Postgres Distributed clusters inside Kubernetes with capabilities including:

Deployment of EDB Postgres Distributed clusters with versions 5 and later.
Additional self-healing capability on top of that of Postgres Distributed, such as recovery and restart of failed PGD nodes.
Defined services that allow applications to connect to the write leader of each PGD group.

Note

The EDB Postgres Distributed for Kubernetes operator leverages EDB Postgres for Kubernetes (PG4K) and inherits many of that project's
capabilities. EDB Postgres Distributed for Kubernetes version 1.0.0 is based, specifically, on release 1.22 of PG4K. See the PG4K release
notes for more details.

Features

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

https://www.postgresql.org/about/policies/trademarks/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/rel_notes/

Component Description

PGD4K Deployment of EDB Postgres Distributed clusters with versions 5 and later inside Kubernetes

PGD4K Self-healing capabilities such as recovery and restart of failed PGD nodes

PGD4K Defined services that allow applications to connect to the write leader of each PGD group

PGD4K Implementation of Raft subgroups

PGD4K TLS connections and client certificate authentication

PGD4K Continuous backup to an S3-compatible object store

3 Before you start

Before you get started, it's essential that you become familiar with some terminology that's specific to Kubernetes and PGD.

Kubernetes terminology

Node : A node is a worker machine in Kubernetes, either virtual or physical, where all services necessary to run pods are managed by the control plane
nodes.

Pod : A pod is the smallest computing unit that can be deployed in a Kubernetes cluster and is composed of one or more containers that share network
and storage.

Service : A service is an abstraction that exposes as a network service an application that runs on a group of pods and standardizes important features,
such as service discovery across applications, load balancing, and failover.

Secret : A secret is an object that's designed to store small amounts of sensitive data, such as passwords, access keys, or tokens, for use within pods.

Storage class : A storage class allows an administrator to define the classes of storage in a cluster, including provisioner (such as AWS EBS), reclaim
policies, mount options, volume expansion, and so on.

Persistent volume : A persistent volume (PV) is a resource in a Kubernetes cluster that represents storage that was either manually provisioned by an
administrator or dynamically provisioned by a storage class controller. A PV is associated with a pod using a persistent volume claim, and its lifecycle
is independent of any pod that uses it. Normally, a PV is a network volume, especially in the public cloud. A local persistent volume (LPV) is a
persistent volume that exists only on the particular node where the pod that uses it is running.

Persistent volume claim : A persistent volume claim (PVC) represents a request for storage, which might include size, access mode, or a particular
storage class. Similar to how a pod consumes node resources, a PVC consumes the resources of a PV.

Namespace : A namespace is a logical and isolated subset of a Kubernetes cluster and can be seen as a virtual cluster within the wider physical
cluster. Namespaces allow administrators to create separated environments based on projects, departments, teams, and so on.

RBAC : Role-based access control (RBAC), also known as role-based security, is a method used in computer systems security to restrict access to the
network and resources of a system to authorized users only. Kubernetes has a native API to control roles at the namespace and cluster level and
associate them with specific resources and individuals.

CRD : A custom resource definition (CRD) is an extension of the Kubernetes API and allows developers to create new data types and objects, called
custom resources.

Operator : An operator is a Kubernetes software extension that automates those steps that are normally performed by a human operator when
managing one or more applications or given services. An operator assists Kubernetes in making sure that the resource's defined state always matches
the observed one.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

kubectl : kubectl is the command-line tool used to manage a Kubernetes cluster.

EDB Postgres Distributed for Kubernetes requires a Kubernetes version supported by the community. See Supported releases for details.

PGD terminology

For more information, see Terminology in the PGD documentation.

Data node : A PGD database instance.

Failover : The automated process that recognizes a failure in a highly available database cluster and takes action to connect the application to another
active database.

Switchover : A planned change in connection between the application and the active database node in a cluster, typically done for maintenance.

Write leader : In always-on architectures, a node is selected as the correct connection endpoint for applications. This node is called the write leader.
The write leader is selected by consensus of a quorum of data nodes.

Cloud terminology

Region : A region in the cloud is an isolated and independent geographic area organized in availability zones. Zones within a region have very little
round-trip network latency.

Zone : An availability zone in the cloud (also known as a zone) is an area in a region where resources can be deployed. Usually, an availability zone
corresponds to a data center or an isolated building of the same data center.

What to do next

Now that you are familiar with the terminology, you can test EDB Postgres Distributed for Kubernetes on your laptop using a local cluster before
deploying the operator in your selected cloud environment.

4 Use cases

EDB Postgres Distributed for Kubernetes was designed to work with applications that reside in the same Kubernetes cluster for a full cloud native
experience.

However, it might happen that, while the database can be hosted inside a Kubernetes cluster, applications can't be containerized at the same time and
need to run in a traditional environment such as a VM.

The following is a summary of the basic considerations. See the EDB Postgres for Kubernetes documentation for more detail.

Case 1: Applications inside Kubernetes

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

https://kubernetes.io/docs/reference/kubectl/overview/
https://www.enterprisedb.com/resources/platform-compatibility#pgdk8s
https://www.enterprisedb.com/docs/pgd/latest/terminology/
https://www.enterprisedb.com/docs/pgd/latest/terminology/#node
https://www.enterprisedb.com/docs/pgd/latest/terminology/#failover
https://www.enterprisedb.com/docs/pgd/latest/terminology/#switchover
https://www.enterprisedb.com/docs/pgd/latest/terminology/#write-leader
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/use_cases/

In a typical situation, the application and the database run in the same namespace inside a Kubernetes cluster.

The application, normally stateless, is managed as a standard deployment, with multiple replicas spread over different Kubernetes nodes and
internally exposed through a ClusterIP service.

The service is exposed externally to the end user through an Ingress and the provider's load balancer facility by way of HTTPS.

Case 2: Applications outside Kubernetes

Another possible use case is to manage your PGD database inside Kubernetes while having your applications outside of it, for example, in a virtualized
environment. In this case, PGD is represented by an IP address or host name and a TCP port, corresponding to the defined Ingress resource in
Kubernetes.

The application can still benefit from a TLS connection to PGD.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

5 Architecture

Consider these main architectural aspects when deploying EDB Postgres Distributed in Kubernetes.

EDB Postgres Distributed for Kubernetes is a Kubernetes operator designed to deploy and manage EDB Postgres Distributed clusters running in
private, public, hybrid, or multi-cloud environments.

Relationship with EDB Postgres Distributed

EDB Postgres Distributed (PGD) is a multi-master implementation of Postgres designed for high performance and availability. PGD generally requires
deployment using Trusted Postgres Architect (TPA), a tool that uses Ansible to provision and deploy PGD clusters.

EDB Postgres Distributed for Kubernetes offers a different way of deploying PGD clusters, leveraging containers and Kubernetes. The advantages are
that the resulting architecture:

Is self-healing and robust.
Is managed through declarative configuration.
Takes advantage of the vast and growing Kubernetes ecosystem.

Relationship with EDB Postgres for Kubernetes

A PGD cluster consists of one or more PGD groups, each having one or more PGD nodes. A PGD node is a Postgres database. EDB Postgres Distributed
for Kubernetes internally manages each PGD node using the Cluster resource as defined by EDB Postgres for Kubernetes, specifically a cluster
with a single instance (that is, no replicas).

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://www.enterprisedb.com/docs/pgd/latest/
https://www.enterprisedb.com/docs/pgd/latest/tpa/
https://www.ansible.com/

You can configure the single PostgreSQL instance created by each Cluster in the .spec.cnp section of the PGD Group spec.

In EDB Postgres Distributed for Kubernetes, as in EDB Postgres for Kubernetes, the underlying database implementation is responsible for data
replication. However, it's important to note that failover and switchover work differently, entailing Raft election and nominating new write leaders.
EDB Postgres for Kubernetes handles only the deployment and healing of data nodes.

Managing PGD using EDB Postgres Distributed for Kubernetes

The EDB Postgres Distributed for Kubernetes operator can manage the complete lifecycle of PGD clusters. As such, in addition to PGD nodes
(represented as single-instance Clusters), it needs to manage other objects associated with PGD.

PGD relies on the Raft algorithm for distributed consensus to manage node metadata, specifically agreement on a write leader. Consensus among
data nodes is also required for operations such as generating new global sequences or performing distributed DDL.

These considerations force additional actors in PGD above database nodes.

EDB Postgres Distributed for Kubernetes manages the following:

Data nodes. A node is a database and is managed by EDB Postgres for Kubernetes, creating a Cluster with a single instance.
Witness nodes are basic database instances that don't participate in data replication. Their function is to guarantee that consensus is possible
in groups with an even number of data nodes or after network partitions. Witness nodes are also managed using a single-instance Cluster
resource.
PGD proxies act as Postgres proxies with knowledge of the write leader. PGD proxies need information from Raft to route writes to the current
write leader.

Proxies and routing

PGD groups assume full mesh connectivity of PGD nodes. Each node must be able to connect to every other node using the appropriate connection
string (a libpq -style DSN). Write operations don't need to be sent to every node. PGD takes care of replicating data after it's committed to one
node.

For performance, we often recommend sending write operations mostly to a single node, the write leader. Raft is used to identify which node is the
write leader and to hold metadata about the PGD nodes. PGD proxies are used to transparently route writes to write leaders and to quickly pivot to the
new write leader in case of switchover or failover.

It's possible to configure Raft subgroups, each of which can maintain a separate write leader. In EDB Postgres Distributed for Kubernetes, a PGD
group containing a PGD proxy comprises a Raft subgroup.

Two kinds of routing are available with PGD proxies:

Global routing uses the top-level Raft group and maintains one global write leader.
Local routing uses subgroups to maintain separate write leaders. Local routing is often used to achieve geographical separation of writes.

In EDB Postgres Distributed for Kubernetes, local routing is used by default, and a configuration option is available to select global routing.

For more information, see the PGD documentation of routing with Raft.

PGD architectures and high availability

EDB proposes several recommended architectures to make good use of PGD's distributed multi-master capabilities and to offer high availability.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

https://www.enterprisedb.com/docs/pgd/latest/nodes/#witness-nodes
https://www.enterprisedb.com/docs/pgd/latest/routing/proxy/
https://www.enterprisedb.com/docs/pgd/latest/routing/raft/

The Always On architectures are built from either one group in a single location or two groups in two separate locations. See Choosing your
architecture in the PGD documentation for more information.

Deploying PGD on Kubernetes

EDB Postgres Distributed for Kubernetes leverages Kubernetes to deploy and manage PGD clusters. As such, some adaptations are necessary to
translate PGD into the Kubernetes ecosystem.

Images and operands

You can configure PGD to run one of three Postgres distributions. See the PGD documentation to understand the features of each distribution.

To function in Kubernetes, containers are provided for each Postgres distribution. These are the operands. In addition, the operator images are kept in
those same repositories.

See EDB private image registries for details on accessing the images.

Kubernetes architecture

Some of the points of the PG4K document on Kubernetes architecture are reproduced here. See the PG4K documentation for details.

Kubernetes natively provides the possibility to span separate physical locations. These physical locations are also known as data centers, failure
zones, or, more frequently, availability zones. They are connected to each other by way of redundant, low-latency, private network connectivity.

Being a distributed system, the recommended minimum number of availability zones for a Kubernetes cluster is three. This minimum makes the
control plane resilient to the failure of a single zone. This means that each data center is active at any time and can run workloads simultaneously.

You can install EDB Postgres Distributed for Kubernetes in a single Kubernetes cluster or across multiple Kubernetes clusters.

Single Kubernetes cluster

A multi-availability-zone Kubernetes architecture is typical of Kubernetes services managed by cloud providers. Such an architecture enables the EDB
Postgres Distributed for Kubernetes and the EDB Postgres for Kubernetes operators to schedule workloads and nodes across availability zones,
considering all zones active.

PGD clusters can be deployed in a single Kubernetes cluster and take advantage of Kubernetes availability zones to enable high-availability
architectures, including the Always On recommended architectures.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

https://www.enterprisedb.com/docs/pgd/latest/architectures/
https://www.enterprisedb.com/docs/pgd/latest/choosing_server/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/architecture/

You can realize the Always On Single Location architecture shown in Choosing your architecture in the PGD documentation on a single Kubernetes
cluster with three availability zones.

The EDB Postgres Distributed for Kubernetes operator can control the scheduling of pods (that is, which pods go to which data center) using affinity,
tolerations, and node selectors, as is the case with EDB Postgres for Kubernetes. Individual scheduling controls are available for proxies as well as
nodes.

See the Kubernetes documentation on scheduling, and Scheduling in the EDB Postgres for Kubernetes documentation for more information.

Multiple Kubernetes clusters

PGD clusters can also be deployed in multiple Kubernetes clusters that can reliably communicate with each other.

Always On multi-location PGD architectures can be realized on multiple Kubernetes clusters that meet the connectivity requirements.

For more information, see "Connectivity".

Regions and availability zones

When creating Kubernetes clusters in different regions or availability zones for cross-regional replication, ensure the clusters can
communicate with each other by enabling network connectivity. Specifically, every service created with a -node or -group suffix must
be discoverable by all other -node and -group services. You can achieve this by deploying a network connectivity application like
Submariner on every cluster.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

https://www.enterprisedb.com/docs/pgd/latest/architectures/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/scheduling/
https://www.enterprisedb.com/docs/pgd/latest/architectures/
https://submariner.io/

6 Installation

You can deploy EDB Postgres Distributed for Kubernetes using the provided Helm chart.

Info

For more details on the Helm chart, see the Helm chart repo documentation.

This section covers using helm to deploy of a set of default images with the latest available version. If want to specify a different operand or proxy
image, see Identify your installation images and repositories, before continuing with the installation.

Prerequisites

Install Helm. Follow these instructions to install it in your system.

Install kubectl . See Install Tools for intructions.

You have created at least one Kubernetes cluster.

Add the repository

Use helm to add the repository containing all images:

helm repo add edb \
 https://enterprisedb.github.io/edb-postgres-for-kubernetes-charts/

Deploy the images

Important

You need access to the private EDB repository where both the operator and operand images are stored. Access requires a valid EDB
subscription plan.

To identify your access credentials, see Accessing EDB private image registries.

Given that the container images for both the operator and the selected operand are in EDB's private registry, you need your credentials to enable
helm to retrieve them.

Make sure to replace your repo and token in the following command:

helm upgrade --dependency-update \
 --install edb-pg4k-pgd \
 --wait \
 --namespace pgd-operator-system \

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

https://github.com/EnterpriseDB/edb-postgres-for-kubernetes-charts
https://github.com/EnterpriseDB/edb-postgres-for-kubernetes-charts
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/identify_images/
https://helm.sh/
https://helm.sh/docs/intro/quickstart/
https://kubernetes.io/docs/tasks/tools/
https://www.enterprisedb.com/products/plans-comparison

 --create-namespace \
 edb/edb-postgres-distributed-for-kubernetes \
 --set image.imageCredentials.username=<repository_name> \
 --set image.imageCredentials.password=<your_repository_token>

In particular:

Set <repository_name> to the name of the repository, as explained in Which repository to choose?.
Set <your_repository_token> to the repository token for your EDB account, as explained in How to retrieve the token.

Create a certificate issuer

Be sure to create a cert issuer before you start deploying PGD clusters. The Helm chart prompts you to do this, but in case you miss it, you can, for
example, run:

With the operators and a self-signed cert issuer deployed, you can start creating PGD clusters. See the Quick start for an example.

Red Hat OpenShift

If you're trying to install EDB Postgres Distributed for Kubernetes on Red Hat OpenShift, see Red Hat OpenShift, which contains information on the
certified operator maintained by EDB.

7 Quick start

You can test an EDB Postgres Distributed (PGD) cluster on your laptop or computer using EDB Postgres Distributed for Kubernetes on a single local
Kubernetes cluster built with Kind.

Warning

These instructions are only for demonstration, testing, and practice purposes and must not be used in production.

This quick start shows you how to start an EDB Postgres Distributed cluster on your local Kubernetes installation so you can experiment with it.

Important

To connect to the Kubernetes cluster, make sure that you have kubectl installed on your machine. See the Kubernetes documentation
on installing kubectl .

Part 1 - Set up the local Kubernetes playground

kubectl apply -f \
 https://raw.githubusercontent.com/EnterpriseDB/edb-postgres-for-kubernetes-
charts/main/hack/samples/issuer-selfsigned.yaml

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

https://kind.sigs.k8s.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Install Kind, a tool for running local Kubernetes clusters using Docker container nodes. (Kind stands for Kubernetes IN Docker.) If you already have
access to a Kubernetes cluster, you can skip to Part 2.

Install Kind on your environment following the instructions in Kind Quick Start. Then, create a Kubernetes cluster:

Part 2 - Install EDB Postgres Distributed for Kubernetes

After you have a Kubernetes installation up and running on your laptop, you can install EDB Postgres Distributed for Kubernetes.

See Installation for details.

Part 3 - Deploy a PGD cluster

As with any other deployment in Kubernetes, to deploy a PGD cluster you need to apply a configuration file that defines your desired PGDGroup
resources that make up a PGD cluster.

Some sample files are included in the EDB Postgres Distributed for Kubernetes repository. The flexible_3regions.yaml manifest contains the definition
of a PGD cluster with two data groups and a global witness node spread across three regions. Each data group consists of two data nodes and a local
witness node.

Regions and availability zones

When creating Kubernetes clusters in different regions or availability zones for cross-regional replication, ensure the clusters can
communicate with each other by enabling network connectivity. Specifically, every service created with a -node or -group suffix must
be discoverable by all other -node and -group services. You can achieve this by deploying a network connectivity application like
Submariner on every cluster.

Further reading

For more details about the available options, see the "API Reference" section.

You can deploy the flexible-3-regions example by saving it first and running:

You can check that the pods are being created using the get pods command:

The pods are being created as part of PGD nodes. As described in Architecture, they're implemented on top of EDB Postgres for Kubernetes clusters.

You can list the clusters then, which shows the PGD nodes:

kind create cluster --name
pgd

kubectl apply -f flexible_3regions.yaml

kubectl get
pods

$ kubectl get
clusters

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

https://kind.sigs.k8s.io/docs/user/quick-start
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/samples/flexible_3regions.yaml
https://submariner.io/

Ultimately, the PGD nodes are created as part of the PGD groups that make up your PGD cluster.

Notice how the region-c group is only a witness node.

8 Managing EDB Postgres Distributed (PGD) databases

As described in the architecture document, EDB Postgres Distributed for Kubernetes is an operator created to deploy PGD databases. It provides an
alternative over deployment with TPA, and by leveraging the Kubernetes ecosystem, it can offer self-healing and declarative control. The operator is
also responsible of the backup and restore operations. See Backup.

However, many of the operations and control of PGD clusters aren't managed by the operator. The pods created by EDB Postgres Distributed for
Kubernetes come with the PGD CLI installed. You can use this tool, for example, to execute a switchover.

PGD CLI

Warning

Don't use the PGD CLI to create and delete resources. For example, avoid the create-proxy and delete-proxy commands.
Provisioning of resources is under the control of the operator, and manual creation and deletion isn't supported.

As an example, execute a switchover command.

We recommend that you use the PGD CLI from proxy pods. To find them, get a pod listing for your cluster:

kubectl get pods -n my-namespace

NAME READY STATUS RESTARTS AGE
location-a-1-1 1/1 Running 0 2h
location-a-2-1 1/1 Running 0 2h
location-a-3-1 1/1 Running 0 2h
location-a-proxy-0 1/1 Running 0 2h
location-a-proxy-1 1/1 Running 0 2h

NAME AGE INSTANCES READY STATUS
PRIMARY
region-a-1 2m50s 1 1 Cluster in healthy state region-a-1-
1
region-a-2 118s 1 1 Cluster in healthy state region-a-2-
1
region-a-3 91s 1 1 Cluster in healthy state region-a-3-
1
…
…

$ kubectl get
pgdgroups
NAME DATA INSTANCES WITNESS INSTANCES PHASE
AGE
region-a 2 1 PGDGroup - Healthy
4m50s
region-b 2 1 PGDGroup - Healthy
4m50s
region-c 0 1 PGDGroup - Healthy
4m50s

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16

https://www.enterprisedb.com/docs/pgd/latest/cli/

The proxy nodes have proxy in the name. Choose one, and get a command prompt in it:

kubectl exec -n my-namespace -ti location-a-proxy-0 -- bash

You now have a bash session open with the proxy pod. The pgd command is available:

pgd

Available Commands:
 check-health Checks the health of the EDB Postgres Distributed cluster.
 <- snipped ->
 switchover Switches over to new write leader.
 <- snipped ->

You can easily move your way through getting the information needed for the switchover:

pgd switchover --help

 $ pgd switchover --group-name group_a --node-name bdr-a1
 switchover is complete

pgd show-groups

Group Group ID Type Parent Group Location Raft Routing Write Leader
----- -------- ---- ------------ -------- ---- ------- ------------
world 3239291720 global true true location-a-2
location-a 2135079751 data world true true location-a-1

pgd show-nodes
Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
location-a-1 3165289849 location-a data ACTIVE ACTIVE Up 1
location-a-2 3266498453 location-a data ACTIVE ACTIVE Up 2
location-a-3 1403922770 location-a data ACTIVE ACTIVE Up 3

Accessing the database

In Use cases is a discussion on using the database within the Kubernetes cluster versus from outside. In Connectivity, you can find a discussion on
services, which is relevant for accessing the database from applications.

However you implement your system, your applications must use the proxy service to connect to reap the benefits of PGD and of the increased self-
healing capabilities added by the EDB Postgres Distributed for Kubernetes operator.

Important

As per the EDB Postgres for Kubernetes defaults, data nodes are created with a database called app and owned by a user named app , in
contrast to the bdrdb database described in the EDB Postgres Distributed documentation. You can configure these values in the cnp
section of the manifest. For reference, see Bootstrap in the EDB Postgres for Kubernetes documentation.

You might, however, want access to your PGD data nodes for administrative tasks, using the psql CLI.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/bootstrap/

You can get a pod listing for your PGD cluster and kubectl exec into a data node:

kubectl exec -n my-namespace -ti location-a-1-1 -- psql

In the familiar territory of psql, remember that the default created database is named app (see previous warning).

postgres=# \c app
You are now connected to database "app" as user "postgres".
app=# \x
Expanded display is on.
app=# select * from bdr.node_summary;
-[RECORD 1]---------------------------------------
node_name | location-a-1
node_group_name | location-a
interface_connstr | host=location-a-1-node user=streaming_replica sslmode=verify-ca port=5432
sslkey=/controller/certificates/streaming_replica.key
sslcert=/controller/certificates/streaming_replica.crt sslrootcert=/controller/certificates/server-
ca.crt application_name=location-a-1 dbname=app
peer_state_name | ACTIVE
peer_target_state_name | ACTIVE

<- snipped ->

For your applications, use the non-privileged role (app by default).

You need the user credentials, which are stored in a Kubernetes secret:

kubectl get secrets

NAME TYPE DATA AGE
<- snipped ->
location-a-app kubernetes.io/basic-auth 2 2h

This secret contains the username and password needed for the Postgres DSN, encoded in base64:

kubectl get secrets location-a-app -o yaml

apiVersion: v1
data:
 password: <base64-encoded-password>
 username: <base64-encoded-username>
kind: Secret
metadata:
 creationTimestamp: <timestamp>
 labels:

<- snipped ->

9 Backup on object stores

EDB Postgres Distributed for Kubernetes supports online/hot backup of PGD clusters through physical backup and WAL archiving on an object store.
This means that the database is always up (no downtime required) and that point-in-time recovery (PITR) is available.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

Common object stores

Multiple object stores are supported, such as AWS S3, Microsoft Azure Blob Storage, Google Cloud Storage, MinIO Gateway, or any S3-compatible
provider. Given that EDB Postgres Distributed for Kubernetes configures the connection with object stores by relying on EDB Postgres for Kubernetes,
see the EDB Postgres for Kubernetes cloud provider support documentation for more information.

Important

The EDB Postgres for Kubernetes documentation's Cloud Provider configuration section is available at
spec.backup.barmanObjectStore . In EDB Postgres Distributed for Kubernetes examples, the object store section is at a different

path: spec.backup.configuration.barmanObjectStore .

WAL archive

WAL archiving is the process that sends WAL files to the object storage, and it's essential to execute online/hot backups or PITR. In EDB Postgres
Distributed for Kubernetes, each PGD node is set up to archive WAL files in the object store independently.

The WAL archive is defined in the PGD Group spec.backup.configuration.barmanObjectStore stanza, and is enabled as soon as a
destination path and cloud credentials are set. You can choose to compress WAL files before they're uploaded and you can encrypt them. You can also
enable parallel WAL archiving:

For more information, see the EDB Postgres for Kubernetes WAL archiving documentation.

Scheduled backups

Scheduled backups are the recommended way to configure your backup strategy in EDB Postgres Distributed for Kubernetes. When the PGD group
spec.backup.configuration.barmanObjectStore stanza is configured, the operator selects one of the PGD data nodes as the elected

backup node for which it creates a Scheduled Backup resource.

The .spec.backup.cron.schedule field allows you to define a cron schedule specification, expressed in the Go cron package format.

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
[...]
spec:
 backup:
 configuration:
 barmanObjectStore:
 [...]
 wal:
 compression: gzip
 encryption:
AES256
 maxParallel: 8

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
[...]

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/backup_recovery/#cloud-provider-support
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/backup_recovery/#wal-archiving
https://pkg.go.dev/github.com/robfig/cron#hdr-CRON_Expression_Format

You can suspend scheduled backups if necessary by setting .spec.backup.cron.suspend to true . Setting this setting to true prevents
any new backup from being scheduled.

If you want to execute a backup as soon as the ScheduledBackup resource is created, set .spec.backup.cron.immediate to true .

.spec.backupOwnerReference indicates the ownerReference to use in the created backup resources. The choices are:

none — No owner reference for created backup objects.
self — Sets the ScheduledBackup object as owner of the backup.
cluster — Sets the cluster as owner of the backup.

Note

The EDB Postgres for Kubernetes ScheduledBackup object contains the cluster option to specify the cluster to back up. This option
is currently not supported by EDB Postgres Distributed for Kubernetes and is ignored if specified.

If an elected backup node is deleted, the operator transparently elects a new backup node and reconciles the ScheduledBackup resource
accordingly.

Retention policies

EDB Postgres Distributed for Kubernetes can manage the automated deletion of backup files from the backup object store using retention policies
based on the recovery window. This process also takes care of removing unused WAL files and WALs associated with backups that are scheduled for
deletion.

You can define your backups with a retention policy of 30 days:

For more information, see the EDB Postgres for Kubernetes retention policies in the EDB Postgres for Kubernetes documentation.

Important

Currently, the retention policy is applied only for the elected Backup Node backups and WAL files. Given that each other PGD node also
archives its own WALs independently, it's your responsibility to manage the lifecycle of those WAL files, for example by leveraging the
object storage data retention policy. Also, if you have an object storage data retention policy set up on every PGD node directory, make sure
it's not overlapping or interfering with the retention policy managed by the operator.

spec:
 backup:
 cron:
 schedule: "0 0 0 * *
*"
 backupOwnerReference: self
 suspend: false
 immediate: true

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
[...]
spec:
 backup:
 configuration:
 retentionPolicy: "30d"

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/backup_recovery/#retention-policies

Compression algorithms

Backups and WAL files are uncompressed by default. However, multiple compression algorithms are supported. For more information, see the EDB
Postgres for Kubernetes compression algorithms documentation.

Tagging of backup objects

It's possible to specify tags as key-value pairs for the backup objects, namely base backups, WAL files, and history files. For more information, see the
EDB Postgres for Kubernetes documentation about tagging of backup objects.

On-demand backups of a PGD node

A PGD node is represented as single-instance EDB Postgres for Kubernetes Cluster object. As such, if you need to, it's possible to request an on-
demand backup of a specific PGD node by creating a EDB Postgres for Kubernetes Backup resource. To do that, see EDB Postgres for Kubernetes
on-demand backups in the EDB Postgres for Kubernetes documentation.

Hint

You can retrieve the list of EDB Postgres for Kubernetes clusters that make up your PGD group by running kubectl get cluster -l
k8s.pgd.enterprisedb.io/group=my-pgd-group -n my-namespace .

10 Recovery

In EDB Postgres Distributed for Kubernetes, recovery is available as a way to bootstrap a new PGD group starting from an available physical backup of
a PGD node. The recovery can't be performed in place on an existing PGD group. EDB Postgres Distributed for Kubernetes also supports point-in-time
recovery (PITR), which allows you to restore a PGD group up to any point in time, from the first available backup in your catalog to the last archived
WAL. Having a WAL archive is mandatory in this case.

Prerequisite

Before recovering from a backup:

Make sure that the PostgreSQL configuration (.spec.cnp.postgresql.parameters) of the recovered cluster is compatible with the
original one from a physical replication standpoint.

When recovering in a newly created namespace, first set up a cert-manager CA issuer before deploying the recovered PGD group.

For more information, see EDB Postgres for Kubernetes recovery - Additional considerations in the EDB Postgres for Kubernetes documentation.

Recovery from an object store

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/backup_recovery/#compression-algorithms
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/backup_recovery/#tagging-of-backup-objects
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/backup_recovery/#on-demand-backups
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/bootstrap/#additional-considerations

You can recover from a PGD node backup created by Barman Cloud and stored on supported object storage.

For example, given a PGD group named pgdgroup-example` with three instances with backups available, your object storage contains a directory for
each node:

pgdgroup-example-1 , pgdgroup-example-2 , pgdgroup-example-3

This example defines a full recovery from the object store. The operator transparently selects the latest backup between the defined serverNames
and replays up to the last available WAL.

Important

Make sure to correctly configure the WAL section according to the source cluster. In the example, since the pgdgroup-example PGD
group uses compression and encryption , make sure to set the proper parameters also in the PGD group that's being created by the
restore .

Note

The example takes advantage of the parallel WAL restore feature, dedicating up to eight jobs to concurrently fetch the required WAL files
from the archive. This feature can appreciably reduce the recovery time. Make sure that you plan ahead for this scenario and tune the value
of this parameter for your environment. It makes a difference when you need it.

PITR from an object store

Instead of replaying all the WALs up to the latest one, after extracting a base backup, you can ask PostgreSQL to stop replaying WALs at any point in
time. PostgreSQL uses this technique to achieve PITR. (The presence of a WAL archive is mandatory.)

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
metadata:
 name: pgdgroup-restore
spec:
 [...]
 restore:
 serverNames:
 - pgdgroup-backup-1
 - pgdgroup-backup-2
 - pgdgroup-backup-3
 barmanObjectStore:
 destinationPath: "<destination path
here>"
 s3Credentials:
 accessKeyId:
 name: backup-storage-creds
 key: ID
 secretAccessKey:
 name: backup-storage-creds
 key:
KEY
 wal:
 compression: gzip
 encryption:
AES256
 maxParallel: 8

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

This example defines a time-base target for the recovery:

Important

PITR requires you to specify a targetTime recovery target by using the options described in Recovery targets. When you use
targetTime or targetLSN , the operator selects the closest backup that was completed before that target. Otherwise, it selects the

last available backup in chronological order between the specified serverNames .

Recovery from an object store specifying a backupID

The .spec.restore.recoveryTarget.backupID option allows you to specify a base backup from which to start the recovery process. By
default, this value is empty. If you assign a value to it, the operator uses that backup as the base for the recovery. The value must be in the form of a
Barman backup ID.

This example recovers a new PGD group from a specific backupID of the pgdgroup-backup-1 PGD node:

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
metadata:
 name: pgdgroup-restore
spec:
 [...]
 restore:
 recoveryTarget:
 targetTime: "2023-08-11 11:14:21.00000+02"
 serverNames:
 - pgdgroup-backup-1
 - pgdgroup-backup-2
 - pgdgroup-backup-3
 barmanObjectStore:
 destinationPath: "<destination path
here>"
 s3Credentials:
 accessKeyId:
 name: backup-storage-creds
 key: ID
 secretAccessKey:
 name: backup-storage-creds
 key:
KEY
 wal:
 compression: gzip
 encryption:
AES256
 maxParallel: 8

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
metadata:
 name: pgdgroup-restore
spec:
 [...]

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

Important

When a backupID is specified, make sure to define only the related PGD node in the serverNames option, and avoid defining the
other ones.

Note

Defining a specific backupID is especially needed when using one of the following recovery targets: targetName , targetXID , and
targetImmediate . In such cases, it's important to specify backupID , unless the last available backup in the catalog is okay.

Recovery targets

Beyond PITR are other recovery target criteria you can use. For more information on all the available recovery targets, see EDB Postgres for
Kubernetes recovery targets in the EDB Postgres for Kubernetes documentation.

11 Security

Security for EDB Postgres Distributed for Kubernetes is analyzed at three layers: code, container, and cluster.

Warning

In addition to security practices described here, you must perform regular InfoSec duties on your Kubernetes cluster. Familiarize yourself
with Overview of Cloud Native Security in the Kubernetes documentation.

About the 4C's Security Model

See The 4C's Security Model in Kubernetes blog article for a better understanding and context of the approach EDB takes with security in
EDB Postgres Distributed for Kubernetes.

 restore:
 recoveryTarget:
 backupID: 20230824T133000
 serverNames:
 - pgdgroup-backup-1
 barmanObjectStore:
 destinationPath: "<destination path
here>"
 s3Credentials:
 accessKeyId:
 name: backup-storage-creds
 key: ID
 secretAccessKey:
 name: backup-storage-creds
 key:
KEY
 wal:
 compression: gzip
 encryption:
AES256
 maxParallel: 8

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/recovery/#point-in-time-recovery-pitr
https://kubernetes.io/docs/concepts/security/overview/
https://www.enterprisedb.com/blog/4cs-security-model-kubernetes

Code

Source code of EDB Postgres Distributed for Kubernetes is systematically scanned for static analysis purposes, including security problems. EDB uses
a popular open-source linter for Go called GolangCI-Lint directly in the CI/CD pipeline. GolangCI-Lint can run several linters on the same source code.

One of these is Golang Security Checker, or gosec . gosec is a linter that scans the abstract syntactic tree of the source against a set of rules
aimed at discovering well-known vulnerabilities, threats, and weaknesses hidden in the code. These threads include hard-coded credentials, integer
overflows, SQL injections, and others.

Important

A failure in the static code analysis phase of the CI/CD pipeline is a blocker for the entire delivery of EDB Postgres Distributed for
Kubernetes, meaning that each commit is validated against all the linters defined by GolangCI-Lint.

Container

Every container image that's part of EDB Postgres Distributed for Kubernetes is built by way of CI/CD pipelines following every commit. Such images
include not only those of the operator but also of the operands, specifically every supported PostgreSQL version. In the pipelines, images are scanned
with:

Dockle for best practices in terms of the container build process
Clair for vulnerabilities found in both the underlying operating system and libraries and applications that they run

Important

All operand images are rebuilt once a day by our pipelines in case of security updates at the base image and package level, providing patch
level updates for the container images that EDB distributes.

The following guidelines and frameworks were taken into account for container-level security:

The Container Image Creation and Deployment Guide, developed by the Defense Information Systems Agency (DISA) of the United States
Department of Defense (DoD)
The CIS Benchmark for Docker, developed by the Center for Internet Security (CIS)

About the container-level security

See the Security and Containers in EDB Postgres Distributed for Kubernetes blog article for more information about the approach that EDB
takes on security at the container level in EDB Postgres Distributed for Kubernetes.

Cluster

Security at the cluster level takes into account all Kubernetes components that form both the control plane and the nodes as well as the applications
that run in the cluster, including PostgreSQL.

Role-based access control (RBAC)

The operator interacts with the Kubernetes API server with a dedicated service account called pgd-operator-controller-manager. In Kubernetes this
account is installed by default in the pgd-operator-system namespace. A cluster role binds between this service account and the pgd-operator-
controller-manager cluster role that defines the set of rules, resources, and verbs granted to the operator.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

https://github.com/golangci/golangci-lint
https://github.com/securego/gosec
https://github.com/goodwithtech/dockle
https://github.com/quay/clair
https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/DevSecOps_Enterprise_Container_Image_Creation_and_Deployment_Guide_2.6-Public-Release.pdf
https://www.cisecurity.org/benchmark/docker/
https://www.enterprisedb.com/blog/security-and-containers-cloud-native-postgresql

RedHat OpenShift directly manages the operator RBAC entities by way of Operator Lifecycle Manager (OLM). OLM allows you to grant permissions
only where they're required, implementing the principle of least privilege.

Important

These permissions are exclusively reserved for the operator's service account to interact with the Kubernetes API server. They aren't directly
accessible by the users of the operator that interact only with PGDGroup and PGDGroupCleanup resources.

The following are some examples and, most importantly, the reasons why EDB Postgres Distributed for Kubernetes requires full or partial
management of standard Kubernetes namespaced resources.

jobs : The operator needs to handle jobs to manage different PGDGroup phases.

poddisruptionbudgets : The operator uses pod disruption budgets to make sure enough PGD nodes are kept active during maintenance
operations.

pods : The operator needs to manage PGD nodes as a Cluster resource.

secrets : Unless you provide certificates and passwords to your data nodes, the operator adopts the "convention over configuration" paradigm by
self-provisioning random-generated passwords and TLS certificates and by storing them in secrets.

serviceaccounts : The operator needs to create a service account to enable the PGDGroup recovery job to retrieve the backup objects from the
object store where they reside.

services : The operator needs to control network access to the PGD cluster from applications and properly manage failover/switchover operations
in an automated way.

statefulsets : The operator needs to manage PGD proxies.

validatingwebhookconfigurations and mutatingwebhookconfigurations : The operator injects its self-signed webhook CA into
both webhook configurations, which are needed to validate and mutate all the resources it manages. For more details, see the Kubernetes
documentation.

To see all the permissions required by the operator, you can run kubectl describe clusterrole pgd-operator-manager-role .

EDB Postgres Distributed for Kubernetes internally manages the PGD nodes using the Cluster resource as defined by EDB Postgres for
Kubernetes. See the EDB Postgres for Kubernetes documentation for the list of permissions used by the EDB Postgres for Kubernetes operator service
account.

Calls to the API server made by the instance manager

The instance manager, which is the entry point of the operand container, needs to make some calls to the Kubernetes API server to ensure that the
status of some resources is correctly updated and to access the config maps and secrets that are associated with that Postgres cluster. Such calls are
performed through a dedicated ServiceAccount created by the operator that shares the same PostgreSQL Cluster resource name.

Important

The operand can access only a specific and limited subset of resources through the API server. A service account is the recommended way to
access the API server from within a pod. See the Kubernetes documentation for details.

See the EDB Postgres for Kubernetes documentation for more information on the instance manager.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

https://docs.openshift.com/container-platform/4.13/operators/understanding/olm/olm-understanding-olm.html
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/security/
https://kubernetes.io/docs/tasks/run-application/access-api-from-pod/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/security/

Pod security policies

A pod security policy is the Kubernetes way to define security rules and specifications that a pod needs to meet to run in a cluster. For InfoSec
reasons, every Kubernetes platform must implement them.

EDB Postgres Distributed for Kubernetes doesn't require privileged mode for containers execution. The PostgreSQL containers run as the postgres
system user. No component requires running as root.

Likewise, volumes access doesn't require privileged mode or root privileges. Proper permissions must be assigned by the Kubernetes platform or
administrators. The PostgreSQL containers run with a read-only root filesystem, that is, no writable layer.

The operator explicitly sets the required security contexts.

On Red Hat OpenShift, Cloud Native PostgreSQL runs in the restricted security context constraint, the most restrictive one. The goal is to limit
the execution of a pod to a namespace allocated UID and SELinux context.

Security Context Constraints in OpenShift

For more information on security context constraints (SCC) in OpenShift, see the Managing SCC in OpenShift article.

Security context constraints and namespaces

As stated in the Openshift documentation, SCCs aren't applied in the default namespaces (default , kube-system , kube-public ,
openshift-node , openshift-infra , openshift). Don't use them to run pods. CNP clusters deployed in those namespaces will

be unable to start due to missing SCCs.

Exposed ports

EDB Postgres Distributed for Kubernetes exposes ports at operator, instance manager, and operand levels, as shown in the table.

System Port number Exposing Name Certificates Authentication

operator 9443 webhook server webhook-server TLS Yes

operator 8080 metrics metrics no TLS No

instance manager 9187 metrics metrics no TLS No

instance manager 8000 status status no TLS No

operand 5432 PostgreSQL instance postgresql optional TLS Yes

PGD

The current implementation of EDB Postgres Distributed for Kubernetes creates passwords for the postgres superuser and the database owner.

As far as encryption of passwords is concerned, EDB Postgres Distributed for Kubernetes follows the default behavior of PostgreSQL: starting with
PostgreSQL 14, password_encryption is by default set to scram-sha-256 . On earlier versions, it's set to md5 .

Important

See Connection DSNs and SSL in the PGD documentation for details.

You can disable management of the postgres user password using secrets by setting enableSuperuserAccess to false in the cnp section of

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://www.openshift.com/blog/managing-sccs-in-openshift
https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html#role-based-access-to-ssc_configuring-internal-oauth
https://www.enterprisedb.com/docs/pgd/latest/nodes/#connection-dsns-and-ssl-tls

the spec.

Note

The operator supports toggling the enableSuperuserAccess option. When you disable it on a running cluster, the operator ignores the
content of the secret. Remove it (if previously generated by the operator) and set the password of the postgres user to NULL , in effect
disabling remote access through password authentication.

Storage

EDB Postgres Distributed for Kubernetes delegates encryption at rest to the underlying storage class. For data protection in production environments,
we highly recommend that you choose a storage class that supports encryption at rest.

12 Connectivity

Information about secure network communications in a PGD cluster includes:

Services
Domain names resolution using fully qualified domain names (FQDN)
TLS configuration

Notice

Although these topics might seem unrelated to each other, they all participate in the configuration of the PGD resources to make them
universally identifiable and accessible over a secure network.

Services

Resources in a PGD cluster are accessible through Kubernetes services. Every PGD group manages several of them, namely:

One service per node, used for internal communications (node service)
A group service to reach any node in the group, used primarily by EDB Postgres Distributed for Kubernetes to discover a new group in the
cluster
A proxy service to enable applications to reach the write leader of the group transparently using PGD Proxy

For an example that uses these services, see Connecting an application to a PGD cluster.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

Each service is generated from a customizable template in the .spec.connectivity section of the manifest.

All services must be reachable using their FQDN from all the PGD nodes in all the Kubernetes clusters. See Domain names resolution.

EDB Postgres Distributed for Kubernetes provides a service templating framework that gives you the availability to easily customize services at the
following three levels:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

Node Service Template : Each PGD node is reachable using a service that can be configured in the
.spec.connectivity.nodeServiceTemplate section.

Group Service Template : Each PGD group has a group service that's a single entry point for the whole group and that can be configured in the
.spec.connectivity.groupServiceTemplate section.

Proxy Service Template : Each PGD group has a proxy service to reach the group write leader through the PGD proxy and can be configured in the
.spec.connectivity.proxyServiceTemplate section. This is the entry-point service for the applications.

You can use templates to create a LoadBalancer service or to add arbitrary annotations and labels to a service to integrate with other components
available in the Kubernetes system (that is, to create external DNS names or tweak the generated load balancer).

Domain names resolution

EDB Postgres Distributed for Kubernetes ensures that all resources in a PGD group have a FQDN by adopting a convention that uses the PGD group
name as a prefix for all of them.

As a result, it expects you to define the domain name of the PGD group. This can be done through the .spec.connectivity.dns section, which
controls how the FQDN for the resources are generated with two fields:

domain — Domain name for all the objects in the PGD group to use (mandatory).
hostSuffix — Suffix to add to each service in the PGD group (optional).

TLS configuration

EDB Postgres Distributed for Kubernetes requires that resources in a PGD cluster communicate over a secure connection. It relies on PostgreSQL's
native support for SSL connections to encrypt client/server communications using TLS protocols for increased security.

Currently, EDB Postgres Distributed for Kubernetes requires that cert-manager is installed. Cert-manager was chosen as the tool to provision dynamic
certificates given that it's widely recognized as the standard in a Kubernetes environment.

The spec.connectivity.tls section describes how the communication between the nodes happens:

mode is an enumeration describing how the server certificates are verified during PGD group nodes communication. It accepts the following
values, as documented in SSL Support in the PostgreSQL documentation:

verify-full
verify-ca
required

serverCert defines the server certificates used by the PGD group nodes to accept requests. The clients validate this certificate depending
on the passed TLS mode. It accepts the same values as mode .

clientCert defines the streaming_replica user certificate used by the nodes to authenticate each other.

Server TLS configuration

The server certificate configuration is specified in the .spec.connectivity.tls.serverCert.certManager section of the PGDGroup

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

https://www.postgresql.org/docs/current/libpq-ssl.html
https://cert-manager.io/
https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS

custom resource.

The following assumptions were made for this section to work:

An issuer .spec.connectivity.tls.serverCert.certManager.issuerRef is available for the domain
.spec.connectivity.dns.domain and any other domain used by
.spec.connectivity.tls.serverCert.certManager.altDnsNames .

There's a secret containing the public certificate of the CA used by the issuer
.spec.connectivity.tls.serverCert.caCertSecret .

The .spec.connectivity.tls.serverCert.certManager is used to create a per-node cert-manager certificate request. The resulting
certificate is used by the underlying Postgres instance to terminate TLS connections.

The operator adds the following altDnsNames to the certificate:

$node$hostSuffix.$domain
$groupName$hostSuffix.$domain

Important

It's your responsibility to add to .spec.connectivity.tls.serverCert.certManager.altDnsNames any name required from
the underlying networking architecture, for example, load balancers used by the user to reach the nodes.

Client TLS configuration

The operator requires client certificates to be dynamically provisioned using cert-manager (the recommended approach) or pre-provisioned using
secrets.

Dynamic provisioning via cert-manager

The client certificates configuration is managed by the .spec.connectivity.tls.clientCert.certManager section of the PGDGroup
custom resource. The following assumptions were made for this section to work:

An issuer .spec.connectivity.tls.clientCert.certManager.issuerRef is available and signs a certificate with the common
name streaming_replica .
There's a secret containing the public certificate of the CA used by the issuer
.spec.connectivity.tls.clientCert.caCertSecret .

The operator uses the configuration under .spec.connectivity.tls.clientCert.certManager to create a certificate request per the
streaming_replica Postgres user. The resulting certificate is used to secure communication between the nodes.

Pre-provisioned certificates via secrets

Alternatively, you can specify a secret containing the pre-provisioned client certificate for the streaming replication user through the
.spec.connectivity.tls.clientCert.preProvisioned.streamingReplica.secretRef option. The certificate lifecycle in this

case is managed entirely by a third party, either manually or automated, by updating the content of the secret.

Connecting to a PGD cluster from an application

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

Connecting to a PGD group from an application running inside the same Kubernetes cluster or from outside the cluster is a simple procedure. In both
cases, you connect to the proxy service of the PGD group as the app user. The proxy service is a LoadBalancer service that routes the connection to
the write leader of the PGD group.

Connecting from inside the cluster

When connecting from inside the cluster, you can use the proxy service name to connect to the PGD group. The proxy service name is composed of the
PGD group name and the optional host suffix defined in the .spec.connectivity.dns section of the PGDGroup custom resource.

For example, if the PGD group name is my-group , and the host suffix is .my-domain.com , the proxy service name is my-group.my-
domain.com .

Before connecting, you need to get the password for the app user from the app user secret. The naming format of the secret is my-group-app for a
PGD group named my-group .

You can get the username and password from the secret using the following commands:

With this, you have all the pieces for a connection string to the PGD group:

postgresql://<app-user>:<app-password>@<proxy-service-name>:5432/<database>

Or, for a psql invocation:

Where app-user and app-password are the values you got from the secret, and database is the name of the database you want to connect
to. (The default is app for the app user.)

Connecting from outside the Kubernetes cluster

When connecting from outside the Kubernetes cluster, in the general case, the Ingress resource or a load balancer is necessary. Check your cloud
provider or local installation for more information about their behavior in your environment.

Ingresses and load balancers require a pod selector to forward connection to the PGD proxies. When configuring them, we suggest using the following
labels:

k8s.pgd.enterprisedb.io/group — Set the PGD group name.
k8s.pgd.enterprisedb.io/workloadType — Set to pgd-proxy .

If using Kind or other solutions for local development, the easiest way to access the PGD group from outside is to use port forwarding to the proxy
service. You can use the following command to forward port 5432 on your local machine to the proxy service:

Where my-group.my-domain.com is the proxy service name from the previous example.

kubectl get secret my-group-app -o jsonpath='{.data.username}' | base64 --
decode
kubectl get secret my-group-app -o jsonpath='{.data.password}' | base64 --
decode

psql -U <app-user> -h <proxy-service-name>
<database>

kubectl port-forward svc/my-group.my-domain.com 5432:5432

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

13 Certificates

EDB Postgres Distributed for Kubernetes was designed to natively support TLS certificates. To set up an PGD cluster, each PGD node requires:

A server certification authority (CA) certificate
A server TLS certificate signed by the server CA
A client CA certificate
A streaming replication client certificate generated by the client CA

Note

You can find all the secrets used by each PGD node and the expiry dates in the cluster (PGD node) status.

EDB Postgres Distributed for Kubernetes is very flexible when it comes to TLS certificates. It operates primarily in two modes:

Operator managed — Certificates are internally managed by the operator in a fully automated way and signed using a CA created by EDB
Postgres Distributed for Kubernetes.
User provided — Certificates are generated outside the operator and imported in the cluster definition as secrets. EDB Postgres Distributed for
Kubernetes integrates itself with cert-manager.

For more information, see the EDB Postgres for Kubernetes documentation.

14 Client TLS/SSL connections

Certificates

See Certificates for more details on how EDB Postgres Distributed for Kubernetes supports TLS certificates.

The EDB Postgres Distributed for Kubernetes operator was designed to work with TLS/SSL for both encryption in transit and authentication on server
and client sides. PGD nodes are created as cluster resources using the EDB Postgres for Kubernetes operator. This includes deploying a certification
authority (CA) to create and sign TLS client certificates.

See the EDB Postgres for Kubernetes documentation for more information on issuers and certificates.

15 Declarative pausing and resuming

The declarative pausing and resuming feature enables saving CPU power by removing the database pods while keeping the database PVCs.

Declarative pausing and resuming leverages the hibernation functionality available for EDB Postgres for Kubernetes. For additional depth and an
explanation of how hibernation works, see the Postgres for Kubernetes documentation on declarative hibernation.

Request pause by adding the k8s.pgd.enterprisedb.io/pause annotation in the desired PGD group.

For example:

After a few seconds, the requested PGD group will be in paused state, with all the database pods removed:

kubectl annotate pgdgroup region-a
k8s.pgd.enterprisedb.io/pause=on

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/certificates/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/ssl_connections/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/declarative_hibernation/

To resume a paused PGD group, set the annotation to off . Remember to add the --overwrite flag:

In a few seconds, you should see the nodes start resuming, and the pods to be re-created.

There are some requirements before the pause annotation can put the PGD group on Pause. Ideally, the PGD Group should be in Healthy state.
Alternatively, if all the data nodes in the PGD Group are healthy at the individual level, Pause can also be initiated.

16 EDB private image registries

The images for the EDB Postgres Distributed for Kubernetes and EDB Postgres for Kubernetes operators, as well as various operands, are kept in
private container image registries under docker.enterprisedb.com .

Important

Access to the private registries requires an account with EDB and is reserved for EDB customers with a valid subscription plan. Credentials
are run through your EDB account. For trials, see Trials.

Which repository to choose?

EDB Postgres Distributed for Kubernetes is available as part of the Extreme High Availability Add-On on top of either the EDB Enterprise Plan or EDB
Standard Plan.

Depending on your subscription plan, EDB Postgres Distributed for Kubernetes is in one of the following repositories.

Plan Repository

EDB Standard Plan k8s_standard_pgd

kubectl get
pgdgroups

NAME DATA INSTANCES WITNESS INSTANCES PHASE
AGE
region-a 2 1 PGDGroup - Paused
25m
region-b 2 1 PGDGroup - Healthy
25m
region-c 0 1 PGDGroup - Healthy
25m

kubectl annotate pgdgroup region-a k8s.pgd.enterprisedb.io/pause=off --
overwrite

kubectl get
pgdgroups

NAME DATA INSTANCES WITNESS INSTANCES PHASE
AGE
region-a 2 1 Pause - resume nodes
1m
region-b 2 1 PGDGroup - Healthy
25m
region-c 0 1 PGDGroup - Healthy
25m

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

https://www.enterprisedb.com/products/plans-comparison#selfmanagedenterpriseplan

EDB EnterpriseDB Plan k8s_enterprise_pgd

Plan Repository

Use the name of the repository as the username when you log in to the EDB container registry, for example, through docker login or a
kubernetes.io/dockerconfigjson pull secret.

Important

Each repository contains all the images you can access with your plan. You don't need to connect to different repositories to access different
images, such as operator or operand images.

How to retrieve the token

In the repos page in EDB, is an EDB Repos 2.0 section where a repo token appears obscured.

Next to the repo token is a Copy Token button to copy the token and an eye icon for looking at the content of the token.

Use the repo token as the password when you log in to the EDB container registry.

Example with docker login

You can log in using Docker from your terminal. We suggest that you copy the repo token using Copy Token. The docker command prompts you for
a username and a password.

The username is the repo you're trying to access, and the password is the token you just copied:

$ docker login docker.enterprisedb.com
Username: k8s_enterprise_pgd

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types
https://www.enterprisedb.com/repos-downloads

Trials

If you're a trialist or a preview user, use k8s_enterprise_pgd as the name of the repository, and follow the instructions in How to retrieve the
token for the token.

Operand images

EDB Postgres Distributed for Kubernetes is an operator that supports running EDB Postgres Distributed (PGD) version 5 on three PostgreSQL
distributions:

PostgreSQL
EDB Postgres Advanced Server
EDB Postgres Extended

Important

See Choosing a Postgres distribution in the PGD documentation for details and a comparison of PGD on the different supported PostgreSQL
distributions.

Due to the immutable application container adoption in EDB operators, the operator expects for the container images to include all the binaries
required to run the requested version of PGD on top of the required distribution and version of Postgres.

These images follow the requirements and the conventions described in Container image requirements in the EDB Postgres for Kubernetes
documentation, adding the bdr5 extension.

The table shows the image name prefix for each Postgres distribution.

Postgres distribution Versions Image name Repositories

EDB Postgres Extended 15, 14 edb-postgres-extended-pgd k8s_standard_pgd , k8s_enterprise_pgd

EDB Postgres
Advanced

15, 14 edb-postgres-advanced-pgd k8s_enterprise_pgd

Image naming

For more information on operand image naming and proxy image naming, see Identify your image name.

17 Predefined labels

These predefined labels are managed by the EDB Postgres Distributed for Kubernetes operator.

k8s.pgd.enterprisedb.io/certificateType : Indicates the type of the certificates. replication indicates a certificate to be used to
authenticate the replication client. server indicates a certificate to be used for server authentication.

Password:
Login Succeeded

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

https://www.enterprisedb.com/docs/pgd/latest/choosing_server/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/container_images/
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/identify_images/identify_image_name/

k8s.pgd.enterprisedb.io/group : Name of the PGDGroup that the resource belongs to. Added to cluster or instance resources.

k8s.pgd.enterprisedb.io/isWitnessService : Indicates a service is for a witness node.

k8s.pgd.enterprisedb.io/type : Type of the resource added to cluster or instance resources, usually node .

k8s.pgd.enterprisedb.io/workloadType : Indicates the workload type of the resource added to cluster or instance resources. pgd-
node-data indicates data node; pgd-node-witness a witness node; pgd-proxy for PGD Proxy node; proxy-svc for PGD Proxy service;
group-svc for PGD group service to communicate with any node in the PGDGroup; node-svc is a service created from the CNP service template;
scheduled-backup is added to scheduledBackup resources; bootstrap-cross-location-pgd-group is added to the pod that

creates a cross-location PGD group; pgd-node-restore is added to the pod that starts the node restore process.

Predefined annotations

k8s.pgd.enterprisedb.io/dirtyMetadata : Set in CNP cluster that have been generated from a backup and need to have their metadata
cleaned up before creating the PGD node. This is written by the restore job.

k8s.pgd.enterprisedb.io/hash : Contains the hash of the used PGDGroup spec.

k8s.pgd.enterprisedb.io/latestCleanupExecuted : Set in the PGDGroup to indicate that the cleanup was executed.

k8s.pgd.enterprisedb.io/node : Contains the name of the node for which a certain certificate was generated. Added to the certificate
resources.

k8s.pgd.enterprisedb.io/noFinalizers : Set in the PGDGroup with value true to skip the finalizer execution. For internal use only.

k8s.pgd.enterprisedb.io/pause : Set in the PGDGroup to pause a PGDGroup.

k8s.pgd.enterprisedb.io/recoverabilityPointsByMethod : Set in the PGDGroup to store the CNP cluster's first recoverability points
by method in a tamper-proof place.

k8s.pgd.enterprisedb.io/seedingServer : Set in the PGDGroup to indicate to the operator which server to restore. This is written by the
restore job.

k8s.pgd.enterprisedb.io/seedingSnapshots : Set in the PGDGroup to indicate to the operator which snapshots to restore. This is
written by the restore job.

18 PGDGroup parting

Deletion and finalizers

When deleting a PGD Group, the operator will start parting every node in the group first. It will connect to an active instance and part every node in
the target group. Once a node is parted, it will not participate in replication and consensus operations. To make sure the node is correctly parted
before being deleted, the operator uses the k8s.pgd.enterprisedb.io/partNodes finalizer. Please refer to the kubernetes document on
finalizers for context.

Note

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

https://kubernetes.io/docs/concepts/overview/working-with-objects/finalizers/

If a namespace holding a PGD Group is deleted directly, we can't ensure the deleting and parting sequence is carried out correctly. Before
deleting a namespace, it is recommended to delete all the contained PGD groups.

Time limit

When parting a node, the operator needs to connect to an active instance to execute the bdr.part_node function. To avoid this operation
hanging, a time limit for the finalizer is used; by default, it is 300 seconds. After the time limit expires, the finalizer will be removed, and the node will
be deleted anyway, potentially leaving stale metadata in the global PGD catalog. This time limit can be configured through
spec.failingFinalizerTimeLimitSeconds , which is specified in seconds.

Skip finalizer

For testing purposes only, the operator also provides an annotation to skip the finalizer: k8s.pgd.enterprisedb.io/noFinalizers . When
this annotation is added to a PGDGroup, the finalizer will be skipped when the PGDGroup is being deleted, and the nodes will not be parted from the
PGD cluster.

PGDGroup cleanup

Cleanup parted node

Once the PGDGroup is deleted, its metadata will remain in the catalog in PARTED state in the bdr.node_summary table. The PGD4K operator
defines a CRD named PGDGroupCleanup to help clean up the PARTED PGDGroup.

In the example below, the PGDGroupCleanup executes locally from region-a , and will clean up all of region-b, with the pre-requisite that all
the nodes must be in the PARTED state.

Please note that if the target group (region-b in the example) contains nodes not in a PARTED state, the Group Cleanup will stop in phase
PGDGroupCleanup - Target PGDGroup is not parted, waiting for it to be parted before executing
PGDGroupCleanup . In cases of extreme need, we can add the force option.

Warning

Using force can leave the PGD cluster in an inconsistent state. Use it only to recover from failures in which you can't part the group
nodes any other way.

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind: PGDGroupCleanup
metadata:
 name: region-b-cleanup
spec:
 executor: region-a
 target: region-b

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind: PGDGroupCleanup
metadata:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

19 Red Hat OpenShift

EDB Postgres Distributed for Kubernetes is a certified operator that can be installed on OpenShift using a web interface.

Ensuring access to EDB private registry

Important

You need access to the private EDB repository where both the operator and operand images are stored. Access requires a valid EDB
subscription plan. See Accessing EDB private image registries for details.

The OpenShift install uses pull secrets to access the operand and operator images, which are held in a private repository.

Once you have credentials to the private repo, you need to create two pull secrets in the openshift-operators namespace:

pgd-operator-pull-secret for the EDB Postgres Distributed for Kubernetes operator images
postgresql-operator-pull-secret for the EDB Postgres for Kubernetes operator images

You can create each secret using the oc create command:

Where:

@@REPOSITORY@@ is the name of the repository, as explained in Which repository to choose?.
@@TOKEN@@ is the repository token for your EDB account, as explained in How to retrieve the token.

Installing the operator

The EDB Postgres Distributed for Kubernetes operator can be found in the Red Hat OperatorHub directly from your OpenShift dashboard.

 name: region-b-cleanup
spec:
 force: true
 executor: region-a
 target: region-b

oc create secret docker-registry pgd-operator-pull-secret
\
 -n openshift-operators --docker-server=docker.enterprisedb.com \
 --docker-username="@@REPOSITORY@@" \
 --docker-password="@@TOKEN@@"

oc create secret docker-registry postgresql-operator-pull-secret
\
 -n openshift-operators --docker-server=docker.enterprisedb.com \
 --docker-username="@@REPOSITORY@@" \
 --docker-password="@@TOKEN@@"

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 39

https://www.enterprisedb.com/products/plans-comparison

1. From the hamburger menu, select Operators > OperatorHub.

2. In the web console, use the search box to filter the listing. For example, enter EDB or pgd :

3. Read the information about the operator and select Install.

4. In the Operator Installation page, select:

The installation mode. Cluster-wide is currently the only mode.
The update channel (currently preview).
The approval strategy, following the availability on the marketplace of a new release of the operator, certified by Red Hat:

Automatic: OLM upgrades the running operator with the new version.
Manual: OpenShift waits for human intervention by requiring an approval in the Installed Operators section.

Cluster-wide installation

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 40

With cluster-wide installation, you're asking OpenShift to install the operator in the default openshift-operators namespace and to make it
available to all the projects in the cluster. This is the default and normally recommended approach to install EDB Postgres Distributed for Kubernetes.

From the web console, for Installation mode, select All namespaces on the cluster (default).

On installation, the operator is visible in all namespaces. In case there were problems during installation, check the logs in any pods in the
openshift-operators project on the Workloads > Pods page as you would with any other OpenShift operator.

Beware

By choosing the cluster-wide installation you, can't easily move to a single-project installation later.

Creating a PGD cluster

After the installation by OpenShift, the operator deployment is in the openshift-operators namespace. Notice the cert-manager operator was
also installed, as was the EDB Postgres for Kubernetes operator (postgresql-operator-controller-manager).

After checking that the pgd-operator-controller-manager deployment is READY, you can start creating PGD clusters. The EDB Postgres
Distributed for Kubernetes repository contains some useful sample files.

You must deploy your PGD clusters on a dedicated namespace/project. The default namespace is reserved.

First, then, create a new namespace, and deploy a self-signed certificate Issuer in it:

Using PGD in a single OpenShift cluster in a single region

Now you can deploy a PGD cluster, for example a flexible 3-region, which contains two data groups and a witness group. You can find the YAML
manifest in the file flexible_3regions.yaml .

Your PGD groups start to come up:

$ oc get deployments -n openshift-
operators
NAME READY UP-TO-DATE AVAILABLE
AGE
cert-manager-operator 1/1 1 1
11m
pgd-operator-controller-manager 1/1 1 1
11m
postgresql-operator-controller-manager-1-20-0 1/1 1 1
23h
…

oc create ns my-
namespace
oc apply -n my-namespace -f
\
 https://raw.githubusercontent.com/EnterpriseDB/edb-postgres-for-kubernetes-
charts/main/hack/samples/issuer-selfsigned.yaml

oc apply -f flexible_3regions.yaml -n my-
namespace

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 41

https://raw.githubusercontent.com/EnterpriseDB/edb-postgres-for-kubernetes-charts/main/hack/samples/issuer-selfsigned.yaml
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/samples/flexible_3regions.yaml

Using PGD in multiple OpenShift clusters in multiple regions

To deploy PGD in multiple OpenShift clusters in multiple regions, you must first establish a way for the PGD groups to communicate with each other.
The recommended way of achieving this with multiple OpenShift clusters is to use Submariner. Configuring the connectivity is outside the scope of
this documentation. However, once you've established connectivity between the OpenShift clusters, you can deploy PGD groups synced with one
another.

Warning

This example assumes you're deploying three PGD groups, one in each OpenShift cluster, and that you established connectivity between the
OpenShift clusters using Submariner.

Similar to the single-cluster example, this example creates two data PGD groups and one witness group. In contrast to that example, each group lives
in a different OpenShift cluster.

In addition to basic connectivity between the OpenShift clusters, you need to ensure that each OpenShift cluster contains a certificate authority that's
trusted by the other OpenShift clusters. This condition is required for the PGD groups to communicate with each other.

The OpenShift clusters can all use the same certificate authority, or each cluster can have its own certificate authority. Either way, you need to ensure
that each OpenShift cluster's certificates trust the other OpenShift clusters' certificate authorities.

This example uses a self-signed certificate that has a single certificate authority used for all certificates on all the OpenShift clusters.

The example refers to the OpenShift clusters as OpenShift Cluster A , OpenShift Cluster B , and OpenShift Cluster C . In
OpenShift, an installation of the EDB Postgres Distributed for Kubernetes operator from OperatorHub includes an installation of the cert-manager
operator. We recommend creating and managing certificates with cert-manager.

1. Create a namespace to hold OpenShift Cluster A , and in it also create the needed objects for a self-signed certificate. Assuming that
the PGD operator and the cert-manager are installed, you create a self-signed certificate Issuer in that namespace.

1. After a few moments, cert-manager creates the issuers and certificates. There are also now two secrets in the pgd-group namespace:
server-ca-key-pair and client-ca-key-pair . These secrets contain the certificates and private keys for the server and client

certificate authorities. You need to copy these secrets to the other OpenShift clusters before applying the issuer-selfsigned.yaml
manifest. You can use the oc get secret command to get the contents of the secrets:

1. After removing the content specific to OpenShift Cluster A from these secrets (such as uid, resourceVersion, and timestamp), you can

$ oc get pgdgroups -n my-
namespace
NAME DATA INSTANCES WITNESS INSTANCES PHASE PHASE DETAILS
AGE
region-a 2 1 PGDGroup - Healthy
23m
region-b 2 1 PGDGroup - Healthy
23m
region-c 0 1 PGDGroup - Healthy
23m

oc create ns pgd-
group
oc apply -n pgd-group -f \
 https://raw.githubusercontent.com/EnterpriseDB/edb-postgres-for-kubernetes-
charts/main/hack/samples/issuer-selfsigned.yaml

oc get secret server-ca-key-pair -n pgd-group -o yaml > server-ca-key-
pair.yaml
oc get secret client-ca-key-pair -n pgd-group -o yaml > client-ca-key-
pair.yaml

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 42

https://submariner.io/getting-started/quickstart/openshift/
https://raw.githubusercontent.com/EnterpriseDB/edb-postgres-for-kubernetes-charts/main/hack/samples/issuer-selfsigned.yaml

switch context to OpenShift Cluster B . Then create the namespace, create the secrets in it, and only then apply the issuer-
selfsigned.yaml file:

1. You can switch context to OpenShift Cluster C and repeat the same process followed for Cluster B:

1. On OpenShift Cluster A , you can create your first PGD group, called region-a . The YAML manifest for the PGD group is:

oc create ns pgd-
group
oc apply -n pgd-group -f server-ca-key-pair.yaml
oc apply -n pgd-group -f client-ca-key-pair.yaml
oc apply -n pgd-group -f \
 https://raw.githubusercontent.com/EnterpriseDB/edb-postgres-for-kubernetes-
charts/main/hack/samples/issuer-selfsigned.yaml

oc create ns pgd-
group
oc apply -n pgd-group -f server-ca-key-pair.yaml
oc apply -n pgd-group -f client-ca-key-pair.yaml
oc apply -n pgd-group -f \
 https://raw.githubusercontent.com/EnterpriseDB/edb-postgres-for-kubernetes-
charts/main/hack/samples/issuer-selfsigned.yaml

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
metadata:
 name: region-a
spec:
 instances: 2
 proxyInstances: 2
 witnessInstances: 1
 pgd:
 parentGroup:
 name: world
 create: true
 discovery:
 - host: region-a-group.pgd-group.svc.clusterset.local
 - host: region-b-group.pgd-group.svc.clusterset.local
 - host: region-c-group.pgd-group.svc.clusterset.local
 cnp:
 storage:
 size:
1Gi
 connectivity:
 dns:
 domain: "pgd-group.svc.clusterset.local"
 additional:
 - domain:
alternate.domain
 - domain: my.domain
 hostSuffix: -
dc1
 tls:
 mode: verify-ca
 clientCert:
 caCertSecret: client-ca-key-pair
 certManager:
 spec:
 issuerRef:
 name: client-ca-issuer

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 43

!!! Important The format of the hostnames in the discovery section differs from the single-cluster example. That's because Submariner is being
used to connect the OpenShift clusters, and Submariner uses the <service>.<ns>.svc.clusterset.local domain to route traffic between
the OpenShift clusters. region-a-group is the name of the service to be created for the PGD group named region-a .

1. Apply the region-a PGD group YAML:

1. You can now switch context to OpenShift Cluster B and create the second PGD group. The YAML for the PGD group in Cluster B is as
follows. The only difference is the metadata.name .

 kind:
Issuer
 group: cert-manager.io
 serverCert:
 caCertSecret: server-ca-key-pair
 certManager:
 spec:
 issuerRef:
 name: server-ca-issuer
 kind:
Issuer
 group: cert-manager.io

oc apply -f region-a.yaml -n pgd-group

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
metadata:
 name: region-b
spec:
 instances: 2
 proxyInstances: 2
 witnessInstances: 1
 pgd:
 parentGroup:
 name: world
 discovery:
 - host: region-a-group.pgd-group.svc.clusterset.local
 - host: region-b-group.pgd-group.svc.clusterset.local
 - host: region-c-group.pgd-group.svc.clusterset.local
 cnp:
 storage:
 size:
1Gi
 connectivity:
 dns:
 domain: "pgd-group.svc.clusterset.local"
 tls:
 mode: verify-ca
 clientCert:
 caCertSecret: client-ca-key-pair
 certManager:
 spec:
 issuerRef:
 name: client-ca-issuer
 kind:
Issuer
 group: cert-manager.io
 serverCert:
 caCertSecret: server-ca-key-pair

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 44

1. Apply the region-b PGD group YAML:

1. You can switch context to OpenShift Cluster C and create the third PGD group. The YAML for the PGD group is:

1. Apply the region-c PGD group YAML:

 certManager:
 spec:
 issuerRef:
 name: server-ca-issuer
 kind:
Issuer
 group: cert-manager.io

oc apply -f region-b.yaml -n pgd-group

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
metadata:
 name: region-c
spec:
 instances: 0
 proxyInstances: 0
 witnessInstances: 1
 pgd:
 parentGroup:
 name: world
 discovery:
 - host: region-a-group.pgd-group.svc.clusterset.local
 - host: region-b-group.pgd-group.svc.clusterset.local
 - host: region-c-group.pgd-group.svc.clusterset.local
 cnp:
 storage:
 size:
1Gi
 connectivity:
 dns:
 domain: "pgd-group.svc.clusterset.local"
 tls:
 mode: verify-ca
 clientCert:
 caCertSecret: client-ca-key-pair
 certManager:
 spec:
 issuerRef:
 name: client-ca-issuer
 kind:
Issuer
 group: cert-manager.io
 serverCert:
 caCertSecret: server-ca-key-pair
 certManager:
 spec:
 issuerRef:
 name: server-ca-issuer
 kind:
Issuer
 group: cert-manager.io

oc apply -f region-c.yaml -n pgd-group

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 45

Now you can switch context back to OpenShift Cluster A and check the status of the PGD group there:

The PGD group is in the phase PGD - Waiting for node discovery .

After creating the PGD groups in each OpenShift cluster, which in turn creates the services for each node, you need to expose the services to the other
OpenShift clusters. You can do this in various ways.

If you're using Submariner, you can do it using the subctl command. Run the subctl export service command for each service in the
pgd-group namespace that has a -group or -node suffix. You can do this by running the following bash for loop on each cluster:

After a few minutes, the status shows that the PGD group is healthy. Once each PGD group is healthy, you can write to the app database in either of
the two data nodes: region-a or region-b . The data is replicated to the other data node.

20 Transparent Data Encryption (TDE)

Important

TDE is available only for operands that support it: EPAS versions 15 and newer, Postgres Extended versions 15 and newer.

Transparent Data Encryption, or TDE, is a technology used by several database vendors to encrypt data at rest, i.e. database files on disk. TDE does
not however encrypt data in use.

TDE is included in EDB Postgres Advanced Server (EPAS) or EDB Postgres Extended, starting with version 15, and it is supported by EDB Postgres
Distributed for Kubernetes.

Important

Before you proceed, please take some time to familiarize with the TDE feature in the EPAS documentation.

With TDE activated, both WAL files and files for tables will be encrypted. Data encryption/decryption is entirely transparent to the user, as it is
managed by the database without requiring any application changes or updated client drivers.

The support for TDE on EDB Postgres Distributed for Kubernetes relies on the implementation from EDB Postgres for Kubernetes (PG4K). Please refer
to the PG4K documentation for the full context.

We show now how to use TDE with a passphrase stored in a Kubernetes Secret, which will be used to encrypt the EPAS binary key.

EPAS documentation

Please refer to the EPAS documentation for details on the EPAS encryption key.

TDE on EDB Postgres Distributed for Kubernetes relies on the PG4K implementation. To activate TDE on a cluster, we use the epas section of the
manifest, which is within the cnp section used for PG4K-level directives such as storage. Use the tde stanza to enable TDE, and set the name of

oc get pgdgroup region-a -n pgd-
group

for service in $(oc get svc -n pgd-group --no-headers -o custom-columns="NAME:.metadata.name" | grep -E
'(-group|-node)$'); do

 subctl export service $service -n pgd-
group
done

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 46

https://submariner.io/operations/deployment/subctl/
https://www.enterprisedb.com/docs/tde/latest/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/tde/
https://www.enterprisedb.com/docs/tde/latest/key_stores/

the Kubernetes secret holding the TDE encryption key.

The following YAML portion contains both a secret holding a passphrase (base-64 encoded), and the epas section activating TDE with the
passphrase.

Again, please refer to the PG4K documentation for additional depth, including how to create the encryption secret and additional ways of using TDE.

As shown in the TDE feature documentation, the information will be encrypted at rest.

For example, open a psql terminal into one of your data nodes.

and create a new table including a text column.

And then verify the location where the newly defined table is stored on disk:

apiVersion: v1
kind:
Secret
metadata:
 name: tde-key
data:
 key:
bG9zcG9sbGl0b3NkaWNlbnBpb3Bpb3Bpb2N1YW5kb3RpZW5lbmhhbWJyZWN1YW5kb3RpZW5lbmZyaW8=

apiVersion:
pgd.k8s.enterprisedb.io/v1beta1
kind:
PGDGroup
[…]
spec:
 instances: 3
[…]
 cnp:
 postgresql:
 epas:
 tde:
 enabled: true
 secretKeyRef:
 name: tde-key
 key:
key
 storage:
 size:
1Gi

kubectl exec -ti <DATA-NODE> -- psql
app

create table foo(bar int, baz
varchar);
insert into foo(bar, baz) values (1, 'hello'), (2,
'goodbye');

select
pg_relation_filepath('foo');
 pg_relation_filepath

 base/16385/16387

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 47

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/tde/
https://www.enterprisedb.com/docs/tde/latest/

You can open a terminal on the same data node:

and verify the file has been encrypted.

21 Examples of configuration

Important

The available examples are for demonstration and experimentation purposes only.

These examples are configuration files for setting up your EDB Postgres Distributed cluster in a Kubernetes environment.

Flexible 3 regions : flexible_3regions.yaml : A PGD cluster with two data groups and a global witness node spread across three regions,
where each data groups consists of two data nodes and a local witness node.

For a list of available options, see the "API Reference" page.

23 API Reference

Package v1beta1 contains API Schema definitions for the pgd v1beta1 API group

Resource Types

PGDGroup
PGDGroupCleanup

CertificateKeystores

Appears in:

CertificateSpec

CertificateKeystores configures additional keystore output formats to be created in the Certificate's output Secret.

Field Description

kubectl exec -ti <DATA-NODE> --
bash

cd $PGDATA/base/16385
hexdump -C 16387 | grep hello
hexdump -C 16387 | grep goodbye

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 48

https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/samples/flexible_3regions.yaml

jks
JKSKeystore

JKS configures options for storing a JKS keystore in the spec.secretName Secret resource.

pkcs12
PKCS12Keystore

PKCS12 configures options for storing a PKCS12 keystore in the spec.secretName Secret
resource.

Field Description

CertificatePrivateKey

Appears in:

CertificateSpec

CertificatePrivateKey contains configuration options for private keys used by the Certificate controller. This allows control of how private keys are
rotated.

Field Description

rotationPolicy
PrivateKeyRotationPolicy

RotationPolicy controls how private keys should be regenerated when a re-issuance is being
processed. If set to Never, a private key will only be generated if one does not already exist in the
target spec.secretName . If one does exists but it does not have the correct algorithm or size, a
warning will be raised to await user intervention. If set to Always, a private key matching the specified
requirements will be generated whenever a re-issuance occurs. Default is 'Never' for backward
compatibility.

encoding
PrivateKeyEncoding

The private key cryptography standards (PKCS) encoding for this certificate's private key to be
encoded in. If provided, allowed values are PKCS1 and PKCS8 standing for PKCS#1 and PKCS#8,
respectively. Defaults to PKCS1 if not specified.

algorithm
PrivateKeyAlgorithm

Algorithm is the private key algorithm of the corresponding private key for this certificate. If provided,
allowed values are either RSA , Ed25519 or ECDSA If algorithm is specified and size is not
provided, key size of 256 will be used for ECDSA key algorithm and key size of 2048 will be used for
RSA key algorithm. key size is ignored when using the Ed25519 key algorithm.

size
int

Size is the key bit size of the corresponding private key for this certificate. If algorithm is set to
RSA , valid values are 2048 , 4096 or 8192 , and will default to 2048 if not specified. If
algorithm is set to ECDSA , valid values are 256 , 384 or 521 , and will default to 256 if not

specified. If algorithm is set to Ed25519 , Size is ignored. No other values are allowed.

CertificateSpec

Appears in:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 49

CertManagerTemplate

CertificateSpec defines the desired state of Certificate. A valid Certificate requires at least one of a CommonName, DNSName, or URISAN to be valid.

Field Description

subject
X509Subject

Full X509 name specification (https://golang.org/pkg/crypto/x509/pkix/#Name).

commonName
string

CommonName is a common name to be used on the Certificate. The CommonName should have a
length of 64 characters or fewer to avoid generating invalid CSRs. This value is ignored by TLS clients
when any subject alt name is set. This is x509 behaviour:
https://tools.ietf.org/html/rfc6125#section-6.4.4

duration
Duration

The requested 'duration' (i.e. lifetime) of the Certificate. This option may be ignored/overridden by
some issuer types. If unset this defaults to 90 days. Certificate will be renewed either 2/3 through its
duration or renewBefore period before its expiry, whichever is later. Minimum accepted duration
is 1 hour. Value must be in units accepted by Go time.ParseDuration
https://golang.org/pkg/time/#ParseDuration

renewBefore
Duration

How long before the currently issued certificate's expiry cert-manager should renew the certificate.
The default is 2/3 of the issued certificate's duration. Minimum accepted value is 5 minutes. Value
must be in units accepted by Go time.ParseDuration https://golang.org/pkg/time/#ParseDuration

dnsNames
[]string

DNSNames is a list of DNS subjectAltNames to be set on the Certificate.

ipAddresses
[]string

IPAddresses is a list of IP address subjectAltNames to be set on the Certificate.

uris
[]string

URIs is a list of URI subjectAltNames to be set on the Certificate.

emailAddresses
[]string

EmailAddresses is a list of email subjectAltNames to be set on the Certificate.

secretName [Required]
string

SecretName is the name of the secret resource that will be automatically created and managed by
this Certificate resource. It will be populated with a private key and certificate, signed by the denoted
issuer. IMPORTANT: this field was required in the original cert-manager API declaration

keystores
CertificateKeystores

Keystores configures additional keystore output formats stored in the secretName Secret
resource.

issuerRef [Required]
ObjectReference

IssuerRef is a reference to the issuer for this certificate. If the kind field is not set, or set to
Issuer , an Issuer resource with the given name in the same namespace as the Certificate will be

used. If the kind field is set to ClusterIssuer , a ClusterIssuer with the provided name will be
used. The name field in this stanza is required at all times.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 50

https://pkg.go.dev/k8s.io/apimachinery/pkg/apis/meta/v1#Duration
https://pkg.go.dev/k8s.io/apimachinery/pkg/apis/meta/v1#Duration

isCA
bool

IsCA will mark this Certificate as valid for certificate signing. This will automatically add the cert
sign usage to the list of usages .

usages
[]KeyUsage

Usages is the set of x509 usages that are requested for the certificate. Defaults to digital
signature and key encipherment if not specified.

privateKey
CertificatePrivateKey

Options to control private keys used for the Certificate.

encodeUsagesInRequest
bool

EncodeUsagesInRequest controls whether key usages should be present in the CertificateRequest

revisionHistoryLimit
int32

revisionHistoryLimit is the maximum number of CertificateRequest revisions that are maintained in
the Certificate's history. Each revision represents a single CertificateRequest created by this
Certificate, either when it was created, renewed, or Spec was changed. Revisions will be removed by
oldest first if the number of revisions exceeds this number. If set, revisionHistoryLimit must be a value
of 1 or greater. If unset (nil), revisions will not be garbage collected. Default value is nil .

Field Description

ConditionStatus

(Alias of string)

ConditionStatus represents a condition's status.

JKSKeystore

Appears in:

CertificateKeystores

JKSKeystore configures options for storing a JKS keystore in the spec.secretName Secret resource.

Field Description

create [Required]
bool

Create enables JKS keystore creation for the Certificate. If true, a file named keystore.jks will
be created in the target Secret resource, encrypted using the password stored in
passwordSecretRef . The keystore file will only be updated upon re-issuance. A file named
truststore.jks will also be created in the target Secret resource, encrypted using the password

stored in passwordSecretRef containing the issuing Certificate Authority

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 51

passwordSecretRef [Required]
SecretKeySelector

PasswordSecretRef is a reference to a key in a Secret resource containing the password used to
encrypt the JKS keystore.

Field Description

KeyUsage

(Alias of string)

Appears in:

CertificateSpec

KeyUsage specifies valid usage contexts for keys. See: https://tools.ietf.org/html/rfc5280#section-4.2.1.3

https://tools.ietf.org/html/rfc5280#section-4.2.1.12

Valid KeyUsage values are as follows: "signing", "digital signature", "content commitment", "key encipherment", "key agreement", "data
encipherment", "cert sign", "crl sign", "encipher only", "decipher only", "any", "server auth", "client auth", "code signing", "email protection", "s/mime",
"ipsec end system", "ipsec tunnel", "ipsec user", "timestamping", "ocsp signing", "microsoft sgc", "netscape sgc"

LocalObjectReference

Appears in:

SecretKeySelector

LocalObjectReference is a reference to an object in the same namespace as the referent. If the referent is a cluster-scoped resource (e.g. a
ClusterIssuer), the reference instead refers to the resource with the given name in the configured 'cluster resource namespace', which is set as a flag
on the controller component (and defaults to the namespace that cert-manager runs in).

Field Description

name [Required]
string

Name of the resource being referred to. More info:
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names

ObjectReference

Appears in:

CertificateSpec

ObjectReference is a reference to an object with a given name, kind and group.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 52

Field Description

name
[Required]
string

Name of the resource being referred to.

group
string

Group of the resource being referred to.

PKCS12Keystore

Appears in:

CertificateKeystores

PKCS12Keystore configures options for storing a PKCS12 keystore in the spec.secretName Secret resource.

Field Description

create [Required]
bool

Create enables PKCS12 keystore creation for the Certificate. If true, a file named keystore.p12
will be created in the target Secret resource, encrypted using the password stored in
passwordSecretRef . The keystore file will only be updated upon re-issuance. A file named
truststore.p12 will also be created in the target Secret resource, encrypted using the password

stored in passwordSecretRef containing the issuing Certificate Authority

passwordSecretRef [Required]
SecretKeySelector

PasswordSecretRef is a reference to a key in a Secret resource containing the password used to
encrypt the PKCS12 keystore.

PrivateKeyAlgorithm

(Alias of string)

Appears in:

CertificatePrivateKey

PrivateKeyAlgorithm represent a private key algorithm

PrivateKeyEncoding

(Alias of string)

Appears in:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 53

CertificatePrivateKey

PrivateKeyEncoding represent a private key encoding

PrivateKeyRotationPolicy

(Alias of string)

Appears in:

CertificatePrivateKey

PrivateKeyRotationPolicy denotes how private keys should be generated or sourced when a Certificate is being issued.

SecretKeySelector

Appears in:

JKSKeystore

PKCS12Keystore

SecretKeySelector is a reference to a specific 'key' within a Secret resource. In some instances, key is a required field.

Field Description

LocalObjectReference
LocalObjectReference

(Members of LocalObjectReference are embedded into this type.)

The name of the Secret resource being referred to.

key
string

The key of the entry in the Secret resource's data field to be used. Some instances of this field may
be defaulted, in others it may be required.

X509Subject

Appears in:

CertificateSpec

X509Subject Full X509 name specification

Field Description

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 54

organizations
[]string

Organizations to be used on the Certificate.

countries
[]string

Countries to be used on the Certificate.

organizationalUnits
[]string

Organizational Units to be used on the Certificate.

localities
[]string

Cities to be used on the Certificate.

provinces
[]string

State/Provinces to be used on the Certificate.

streetAddresses
[]string

Street addresses to be used on the Certificate.

postalCodes
[]string

Postal codes to be used on the Certificate.

serialNumber
string

Serial number to be used on the Certificate.

Field Description

PGDGroup

PGDGroup is the Schema for the pgdgroups API

Field Description

apiVersion
[Required]
string

pgd.k8s.enterprisedb.io/v1beta1

kind [Required]
string

PGDGroup

spec [Required]
PGDGroupSpec

No description provided.

status [Required]
PGDGroupStatus

No description provided.

PGDGroupCleanup

PGDGroupCleanup is the Schema for the pgdgroupcleanups API

Field Description

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 55

apiVersion
[Required]
string

pgd.k8s.enterprisedb.io/v1beta1

kind [Required]
string

PGDGroupCleanup

spec [Required]
PGDGroupCleanupSpec

No description provided.

status [Required]
PGDGroupCleanupStatus

No description provided.

Field Description

Backup

Appears in:

PGDGroupSpec

Backup configures the backup of cnp-pgd nodes

Field Description

configuration [Required]
BackupConfiguration

The CNP configuration to be used for backup. ServerName value is reserved by the operator.

cron [Required]
ScheduledBackupSpec

The scheduled backup for the data

BackupStatus

Appears in:

PGDGroupStatus

BackupStatus contains the current status of the pgd backup

Field Description

clusterName [Required]
string

No description provided.

scheduledBackupName
[Required]
string

No description provided.

scheduledBackupHash
[Required]
string

No description provided.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 56

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#backupconfiguration

CNPStatus

Appears in:

PGDGroupStatus

CNPStatus contains any relevant status for the operator about CNP

Field Description

dataInstances [Required]
int32

No description provided.

witnessInstances [Required]
int32

No description provided.

firstRecoverabilityPointsByMet
hod [Required]
map[string]RecoverabilityPointsByMethod

The recoverability points by method, keyed per CNP clusterName nolint: lll

firstRecoverabilityPoints
[Required]
map[string]string

The recoverability points, keyed per CNP clusterName, as a date in RFC3339 format

superUserSecretIsPresent
[Required]
bool

No description provided.

applicationUserSecretIsPresent
[Required]
bool

No description provided.

podDisruptionBudgetIsPresent
[Required]
bool

No description provided.

CertManagerTemplate

Appears in:

ClientCertConfiguration

ServerCertConfiguration

CertManagerTemplate contains the data to generate a certificate request

Field Description

spec [Required]
CertificateSpec

The Certificate object specification

metadata
[Required]
Metadata

The label and annotations metadata

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 57

ClientCertConfiguration

Appears in:

TLSConfiguration

ClientCertConfiguration contains the information to generate the certificate for the streaming_replica user

Field Description

caCertSecret [Required]
string

CACertSecret is the secret of the CA to be injected into the CloudNativePG configuration

certManager [Required]
CertManagerTemplate

The cert-manager template used to generate the certificates

preProvisioned [Required]
ClientPreProvisionedCertificates

PreProvisioned contains how to fetch the pre-generated client certificates

ClientPreProvisionedCertificates

Appears in:

ClientCertConfiguration

ClientPreProvisionedCertificates instruct how to fetch the pre-generated client certificates

Field Description

streamingReplica [Required]
PreProvisionedCertificate

StreamingReplica the pre-generated certificate for 'streaming_replica' user

CnpBaseConfiguration

Appears in:

CnpConfiguration

PGDGroupSpec

CnpBaseConfiguration contains the configuration parameters that can be applied to both CNP Witness and Data nodes

Field Description

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 58

startDelay [Required]
int32

The time in seconds that is allowed for a PostgreSQL instance to successfully start up (default 3600)

stopDelay [Required]
int32

The time in seconds that is allowed for a PostgreSQL instance node to gracefully shutdown (default
180)

smartShutdownTimeout
int32

The time in seconds that controls the window of time reserved for the smart shutdown of Postgres to
complete. Make sure you reserve enough time for the operator to request a fast shutdown of Postgres
(that is: stopDelay - smartShutdownTimeout).

storage [Required]
StorageConfiguration

Configuration of the storage of the instances

walStorage [Required]
StorageConfiguration

Configuration of the WAL storage for the instances

clusterMaxStartDelay [Required]
int32

The time in seconds that is allowed for a PostgreSQL instance to successfully start up (default 300)

affinity
AffinityConfiguration

Affinity/Anti-affinity rules for Pods

resources
ResourceRequirements

Resources requirements of every generated Pod. Please refer to
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ for more
information.

postgresql
PostgresConfiguration

Configuration of the PostgreSQL server

monitoring [Required]
MonitoringConfiguration

The configuration of the monitoring infrastructure of this cluster

logLevel [Required]
string

The instances' log level, one of the following values: error, warning, info (default), debug, trace

serviceAccountTemplate
[Required]
ServiceAccountTemplate

The service account template to be passed to CNP

otel [Required]
OTELConfiguration

OpenTelemetry Configuration

postInitSQL [Required]
[]string

List of SQL queries to be executed as a superuser immediately after a node has been created - to be
used with extreme care (by default empty)

postInitTemplateSQL [Required]
[]string

List of SQL queries to be executed as a superuser in the template1 after a node has been created -
to be used with extreme care (by default empty)

Field Description

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 59

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#storageconfiguration
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#storageconfiguration
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#affinityconfiguration
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#resourcerequirements-v1-core
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#postgresconfiguration
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#monitoringconfiguration
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#serviceaccounttemplate

seccompProfile [Required]
SeccompProfile

The SeccompProfile applied to every Pod and Container. Defaults to: RuntimeDefault

metadata [Required]
InheritedMetadata

Metadata applied exclusively to the generated Cluster resources. Useful for applying AppArmor
profiles.

managed [Required]
ManagedConfiguration

The configuration that is used by the portions of PostgreSQL that are managed by the CNP instance
manager

Field Description

CnpConfiguration

Appears in:

PGDGroupSpec

CnpConfiguration contains the configurations of the data nodes that will be injected into the resulting clusters composing the PGD group

Field Description

CnpBaseConfiguration
CnpBaseConfiguration

(Members of CnpBaseConfiguration are embedded into this type.) No description provided.

enableSuperuserAccess
bool

When this option is enabled, the CNP operator will create or use the secret defined in the
SuperuserSecret to allow superuser (postgres) access to the database. When this option is disabled
on a running Group, the operator will ignore the content of the secret and set the password of the
postgres user to NULL . Enabled by default.

superuserSecret
LocalObjectReference

The secret containing the superuser password. A new secret will be created with a randomly
generated password if not defined. This field is only allowed in the CNP Instances configuration. A
Witness Node will always use the same SuperuserSecret as the other instances.

ConnectionString

(Alias of map[string]string)

Appears in:

PgdConfiguration

ConnectionString represent the parameters to connect to a PostgreSQL cluster

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 60

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#seccompprofile-v1-core
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#managedconfiguration
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#localobjectreference

ConnectivityConfiguration

Appears in:

PGDGroupSpec

ConnectivityConfiguration describes how to generate the services and certificates for the PGDGroup

Field Description

dns [Required]
RootDNSConfiguration

Describes how the FQDN for the resources should be generated

tls [Required]
TLSConfiguration

The configuration of the TLS infrastructure

nodeServiceTemplate [Required]
ServiceTemplate

Instructs how to generate the service for each node

groupServiceTemplate
[Required]
ServiceTemplate

Instructs how to generate the service for the PGDGroup

proxyServiceTemplate
[Required]
ServiceTemplate

Instructs how to generate the service pointing to the PGD Proxy

ConnectivityStatus

Appears in:

PGDGroupStatus

ConnectivityStatus contains any relevant status for the operator about Connectivity

Field Description

replicationTLSCertificate
[Required]
ReplicationCertificateStatus

ReplicationTLSCertificate is the name of the replication TLS certificate, if we have it

nodeTLSCertificates [Required]
[]NodeCertificateStatus

NodeTLSCertificates are the names of the certificates that have been created for the PGD nodes

unusedCertificates [Required]
[]string

UnusedCertificates are the names of the certificates that we don't use anymore for the PGD nodes

nodesWithoutCertificates
[Required]
[]string

NodesWithoutCertificates are the names of the nodes which have not a server certificate

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 61

nodesNeedingServiceReconcilia
tion [Required]
[]string

NodesNeedingServiceReconciliation are the names of the nodes which have not a server certificate

configurationHash [Required]
string

ConfigurationHash is the hash code of the connectivity configuration, used to check if we had a
change in the configuration or not

Field Description

DNSConfiguration

Appears in:

RootDNSConfiguration

DNSConfiguration describes how the FQDN for the resources should be generated

Field Description

domain [Required]
string

Contains the domain name of by all services in the PGDGroup. It is responsibility of the user to ensure
that the value specified here matches with the rendered nodeServiceTemplate and
groupServiceTemplate

hostSuffix [Required]
string

Contains an optional suffix to add to all the service names in the PGDGroup. The meaning of this
setting it to allow the user to easily mark all the services created in a location for routing purpose
(i.e., add a generic rule to CoreDNS to rewrite some service suffixes as local)

DiscoveryJobConfig

Appears in:

PgdConfiguration

DiscoveryJobConfig contains a series of fields that configure the discovery job

Field Description

delay [Required]
int

Delay amount of time to sleep between retries, measured in seconds

retries [Required]
int

Retries how many times the operation should be retried

timeout [Required]
int

Timeout amount of time given to the operation to succeed, measured in seconds

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 62

InheritedMetadata

Appears in:

CnpBaseConfiguration

PGDGroupSpec

InheritedMetadata contains metadata to be inherited by all resources related to a Cluster

Field Description

labels [Required]
map[string]string

No description provided.

annotations [Required]
map[string]string

No description provided.

Metadata

Appears in:

CertManagerTemplate

ServiceTemplate

Metadata is a structure similar to the metav1.ObjectMeta, but still parseable by controller-gen to create a suitable CRD for the user.

Field Description

labels
map[string]string

Map of string keys and values that can be used to organize and categorize (scope and select) objects.
May match selectors of replication controllers and services. More info:
http://kubernetes.io/docs/user-guide/labels

annotations
map[string]string

Annotations is an unstructured key value map stored with a resource that may be set by external
tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when
modifying objects. More info: http://kubernetes.io/docs/user-guide/annotations

NodeCertificateStatus

Appears in:

ConnectivityStatus

NodeCertificateStatus encapsulate the status of the server certificate of a CNP node

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 63

Field Description

ReplicationCertificateStatus
ReplicationCertificateStatus

(Members of ReplicationCertificateStatus are embedded into this type.) No description
provided.

nodeName [Required]
string

NodeName is the name of the CNP cluster using this certificate

NodeKindName

(Alias of string)

Appears in:

NodeSummary

NodeKindName is a type containing the potential values of node_kind_name from bdr.node_summary

NodeSummary

Appears in:

PGDGroupStatus

NodeSummary shows relevant info from bdr.node_summary

Field Description

node_name [Required]
string

Name of the node

node_group_name [Required]
string

NodeGroupName is the name of the joined group

peer_state_name [Required]
string

Consistent state of the node in human-readable form

peer_target_state_name
[Required]
string

State which the node is trying to reach (during join or promotion)

node_kind_name [Required]
NodeKindName

The kind of node: witness or data

NodesExtensionsStatus

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 64

(Alias of []github.com/EnterpriseDB/pg4k-pgd/api/v1beta1.NodeExtensionStatus)

NodesExtensionsStatus contains a list of NodeExtensionStatus entries

OTELConfiguration

Appears in:

CnpBaseConfiguration

OTELConfiguration is the configuration for external openTelemetry

Field Description

metricsURL [Required]
string

The OpenTelemetry HTTP endpoint URL to accept metrics data

traceURL [Required]
string

The OpenTelemetry HTTP endpoint URL to accept trace data

traceEnable [Required]
bool

Whether to push trace data to OpenTelemetry traceUrl

tls [Required]
OTELTLSConfiguration

TLSConfiguration provides the TLS certificate configuration when MetricsURL and TraceURL are
using HTTPS

OTELTLSConfiguration

Appears in:

OTELConfiguration

OTELTLSConfiguration contains the certificate configuration for TLS connections to openTelemetry

Field Description

caBundleSecretRef [Required]
SecretKeySelector

CABundleSecretRef is a reference to a secret field containing the CA bundle to verify the
openTelemetry server certificate

clientCertSecret [Required]
LocalObjectReference

ClientCertSecret is the name of the secret containing the client certificate used to connect to
openTelemetry. It must contain both the standard "tls.crt" and "tls.key" files, encoded in PEM format.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 65

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#secretkeyselector
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#localobjectreference

PGDGroupCleanupSpec

Appears in:

PGDGroupCleanup

PGDGroupCleanupSpec defines the desired state of PGDGroupCleanup

Field Description

executor [Required]
string

No description provided.

target [Required]
string

No description provided.

force [Required]
bool

Force will force the removal of the PGDGroup even if the target PGDGroup nodes are not
parted

PGDGroupCleanupStatus

Appears in:

PGDGroupCleanup

PGDGroupCleanupStatus defines the observed state of PGDGroupCleanup

Field Description

phase [Required]
github.com/EnterpriseDB/pg4k-
pgd/pkg/resources.OperatorPhaseCleanup

No description provided.

PGDGroupSpec

Appears in:

PGDGroup

PGDGroupSpec defines the desired state of PGDGroup

Field Description

imageName [Required]
string

Name of the container image, supporting both tags (<image>:<tag>) and digests for
deterministic and repeatable deployments (<image>:<tag>@sha256:<digestValue>)

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 66

imagePullPolicy
PullPolicy

Image pull policy. One of Always , Never or IfNotPresent . If not defined, it defaults to
IfNotPresent . Cannot be updated. More info:

https://kubernetes.io/docs/concepts/containers/images#updating-images

imagePullSecrets [Required]
[]LocalObjectReference

The list of pull secrets to be used to pull operator and or the operand images

inheritedMetadata [Required]
InheritedMetadata

Metadata that will be inherited by all objects related to the pgdGroup

instances [Required]
int32

Number of instances required in the cluster

proxyInstances [Required]
int32

Number of proxy instances required in the cluster

witnessInstances [Required]
int32

Number of witness instances required in the cluster

backup [Required]
Backup

The configuration to be used for backups in the CNP instances.

restore [Required]
Restore

The configuration to restore this PGD group from an Object Store service

cnp [Required]
CnpConfiguration

Instances configuration that will be injected into the CNP clusters that compose the PGD Group

witness [Required]
CnpBaseConfiguration

WitnessInstances configuration that will be injected into the WitnessInstances CNP clusters If not
defined, it will default to the Instances configuration

pgd [Required]
PgdConfiguration

Pgd contains instructions to bootstrap this cluster

pgdProxy [Required]
PGDProxyConfiguration

PGDProxy contains instructions to configure PGD Proxy

connectivity [Required]
ConnectivityConfiguration

Configures the connectivity of the PGDGroup, like services and certificates that will be used.

failingFinalizerTimeLimitSeco
nds [Required]
int32

The amount of seconds that the operator will wait in case of a failing finalizer. A finalizer is
considered failing when the operator cannot reach any nodes of the PGDGroup

Field Description

PGDGroupStatus

Appears in:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 67

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#pullpolicy-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#localobjectreference-v1-core

PGDGroup

PGDGroupStatus defines the observed state of PGDGroup

Field Description

latestGeneratedNode [Required]
int32

ID of the latest generated node (used to avoid node name clashing)

phase [Required]
github.com/EnterpriseDB/pg4k-
pgd/pkg/resources.OperatorPhase

The initialization phase of this cluster

phaseDetails [Required]
string

The details of the current phase

phaseTroubleshootHints
[Required]
string

PhaseTroubleshootHints general troubleshooting indications for the given phase

phaseType [Required]
github.com/EnterpriseDB/pg4k-
pgd/pkg/resources.PhaseType

PhaseType describes the phase category.

conditions [Required]
[]Condition

Conditions for PGDGroup object

nodes [Required]
[]NodeSummary

The list of summaries for the nodes in the group

backup [Required]
BackupStatus

The node that is taking backups of this PGDGroup

restore [Required]
RestoreStatus

The status of the restore process

PGD [Required]
PGDStatus

Last known status of PGD

CNP [Required]
CNPStatus

Last known status of CNP

PGDProxy [Required]
PGDProxyStatus

Last known status of PGDProxy

connectivity [Required]
ConnectivityStatus

Last known status of Connectivity

pause [Required]
PauseStatus

Last known status of Pause

PGDNodeGroupEntry

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 68

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#condition-v1-meta

Appears in:

PGDStatus

PGDNodeGroupEntry shows information about the node groups available in the PGD configuration

Field Description

name [Required]
string

Name is the name of the node group

enableProxyRouting [Required]
bool

EnableProxyRouting is true is the node group allows running PGD Proxies

enableRaft [Required]
bool

EnableRaft is true if the node group has a subgroup raft instance

routeWriterMaxLag [Required]
int64

RouteWriterMaxLag Maximum lag in bytes of the new write candidate to be selected as write leader,
if no candidate passes this, there will be no writer selected automatically

routeReaderMaxLag [Required]
int64

RouteReaderMaxLag Maximum lag in bytes for node to be considered viable read-only node

routeWriterWaitFlush [Required]
bool

RouteWriterWaitFlush Whether to wait for replication queue flush before switching to new leader
when using bdr.routing_leadership_transfer()

PGDNodeGroupSettings

Appears in:

PgdConfiguration

PGDNodeGroupSettings contains the settings of the PGD Group

Field Description

routeWriterMaxLag [Required]
int64

RouteWriterMaxLag Maximum lag in bytes of the new write candidate to be selected as write leader,
if no candidate passes this, there will be no writer selected automatically Defaults to -1

routeReaderMaxLag [Required]
int64

RouteReaderMaxLag Maximum lag in bytes for node to be considered viable read-only node Defaults
to -1

routeWriterWaitFlush [Required]
bool

RouteWriterWaitFlush Whether to wait for replication queue flush before switching to new leader
when using bdr.routing_leadership_transfer() Defaults to false

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 69

PGDProxyConfiguration

Appears in:

PGDGroupSpec

PGDProxyConfiguration defines the configuration of PGD Proxy

Field Description

imageName [Required]
string

Name of the PGDProxy container image

logLevel [Required]
string

The PGD Proxy log level, one of the following values: error, warning, info (default), debug, trace

logEncoder [Required]
string

The format of the log output

proxyAffinity [Required]
Affinity

ProxyAffinity/Anti-affinity rules for pods

proxyNodeSelector [Required]
map[string]string

ProxyNodeSelector rules for pods

proxyTolerations [Required]
[]Toleration

ProxyTolerations rules for pods

proxyResources
ResourceRequirements

Defines the resources assigned to the proxy. If not defined uses defaults requests and limits
values.

PGDProxyEntry

Appears in:

PGDStatus

PGDProxyEntry shows information about the proxies available in the PGD configuration

Field Description

name [Required]
string

Name is the name of the proxy

fallbackGroupNames [Required]
[]string

FallbackGroupNames are the names of the fallback groups configured for this proxy

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 70

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#resourcerequirements-v1-core

parentGroupName [Required]
string

ParentGroupName is the parent PGD group of this proxy

maxClientConn [Required]
int

MaxClientConn maximum number of connections the proxy will accept

maxServerConn [Required]
int

MaxServerConn maximum number of connections the proxy will make to the Postgres node

serverConnTimeout [Required]
int64

ServerConnTimeout connection timeout for server connections in seconds

serverConnKeepalive [Required]
int64

ServerConnKeepalive keepalive interval for server connections in seconds

fallbackGroupTimeout [Required]
int64 FallbackGroupTimeout the interval after which the routing falls back to one of the fallback_groups

consensusGracePeriod [Required]
int64

ConsensusGracePeriod the duration in seconds for which proxy continues to route even upon loss of a
Raft leader.

Field Description

PGDProxySettings

Appears in:

PgdConfiguration

PGDProxySettings contains the settings of the proxy

Field Description

fallbackGroups [Required]
[]string

FallbackGroups is the list of groups the proxy should forward connection to when all the data nodes
of this PGD group are not available

maxClientConn [Required]
int

MaxClientConn maximum number of connections the proxy will accept. Defaults to 32767

maxServerConn [Required]
int

MaxServerConn maximum number of connections the proxy will make to the Postgres node. Defaults
to 32767

serverConnTimeout [Required]
int64

ServerConnTimeout connection timeout for server connections in seconds. Defaults to 2

serverConnKeepalive [Required]
int64

ServerConnKeepalive keepalive interval for server connections in seconds. Defaults to 10

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 71

fallbackGroupTimeout [Required]
int64

FallbackGroupTimeout the interval after which the routing falls back to one of the fallback_groups.
Defaults to 60

consensusGracePeriod [Required]
int64

ConsensusGracePeriod the duration in seconds for which proxy continues to route even upon loss of a
Raft leader. If set to 0s, proxy stops routing immediately. Defaults to 6

Field Description

PGDProxyStatus

Appears in:

PGDGroupStatus

PGDProxyStatus any relevant status for the operator about PGDProxy

Field Description

proxyInstances [Required]
int32

No description provided.

writeLead [Required]
string

WriteLead is a reserved field for the operator, is not intended for external usage. Will be removed in
future versions

proxyHash [Required]
string

ProxyHash contains the hash we use to detect if we need to reconcile the proxies

PGDStatus

Appears in:

PGDGroupStatus

PGDStatus any relevant status for the operator about PGD

Field Description

raftConsensusLastChangedStatu
s [Required]
github.com/EnterpriseDB/pg4k-
pgd/pkg/resources.PGDRaftStatus

RaftConsensusLastChangedStatus indicates the latest reported status from bdr.monitor_group_raft

raftConsensusLastChangedMessa
ge [Required]
string

RaftConsensusLastChangedMessage indicates the latest reported message from
bdr.monitor_group_raft

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 72

raftConsensusLastChangedTimes
tamp [Required]
string

RaftConsensusLastChangedTimestamp indicates when the status and message were first reported

registeredProxies [Required]
[]PGDProxyEntry

RegisteredProxies is the status of the registered proxies

nodeGroup [Required]
PGDNodeGroupEntry

NodeGroup is the status of the node group associated with the PGDGroup

Field Description

ParentGroupConfiguration

Appears in:

PgdConfiguration

ParentGroupConfiguration contains the topology configuration of PGD

Field Description

name [Required]
string

Name of the parent group

create [Required]
bool

Create is true when the operator should create the parent group if it doesn't exist

PauseStatus

Appears in:

PGDGroupStatus

PauseStatus contains the information of group hibernating

Field Description

active [Required]
bool

Active indicates the PGDGroup is either:

in process of pausing
already paused
in process of resuming

instances [Required]
int32

Instances is the number of paused PGD instances

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 73

lastStartedTime [Required]
Time

LastStartedTime is the last time the PGDGroup started pausing

lastCompletedTime [Required]
Time

LastCompletedTime is last time the PGDGroup completed pausing

lastResumeStartedTime
[Required]
Time

LastResumeStartedTime is the last time the PGDGroup started resuming

lastResumeCompletedTime
[Required]
Time

LastCompletedTime is last time the PGDGroup completed resuming

Field Description

PgdConfiguration

Appears in:

PGDGroupSpec

PgdConfiguration is the configuration of the PGD group structure

Field Description

parentGroup [Required]
ParentGroupConfiguration

ParentGroup configures the topology of the PGD group

discovery [Required]
[]ConnectionString

The parameters we will use to connect to a node belonging to the parent PGD group. Even if provided,
the following parameters will be overridden with default values: application_name ,
sslmode , dbname and user . The following parameters should not be provided nor used, as

they are not even overridden with defaults: sslkey , sslcert , sslrootcert

discoveryJob [Required]
DiscoveryJobConfig

DiscoveryJob the configuration of the PGD Discovery job

databaseName [Required]
string

Name of the database used by the application. Default: app .

ownerName [Required]
string

Name of the owner of the database in the instance to be used by applications. Defaults to the value of
the database key.

ownerCredentialsSecret
[Required]
LocalObjectReference

Name of the secret containing the initial credentials for the owner of the user database. If empty a
new secret will be created from scratch

proxySettings [Required]
PGDProxySettings

Configuration for the proxy

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 74

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#localobjectreference

nodeGroupSettings [Required]
PGDNodeGroupSettings

Configuration for the PGD Group

globalRouting [Required]
bool

GlobalRouting is true when global routing is enabled, and in this case the proxies will be created in
the parent group

mutations [Required]
SQLMutations

List of SQL mutations to apply to the node group

Field Description

PreProvisionedCertificate

Appears in:

ClientPreProvisionedCertificates

PreProvisionedCertificate contains the data needed to supply a pre-generated certificate

Field Description

secretRef [Required]
string

SecretRef a name pointing to a secret that contains a tls.crt and
tls.key

RecoverabilityPointsByMethod

(Alias of map[github.com/EnterpriseDB/cloud-native-
postgres/api/v1.BackupMethod]k8s.io/apimachinery/pkg/apis/meta/v1.Time)

Appears in:

CNPStatus

RecoverabilityPointsByMethod contains the first recoverability points for a given backup method

ReplicationCertificateStatus

Appears in:

ConnectivityStatus

NodeCertificateStatus

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 75

ReplicationCertificateStatus encapsulate the certificate status

Field Description

name [Required]
string

Name is the name of the certificate

hash [Required]
string

Hash is the hash of the configuration for which it has been generated

isReady [Required]
bool

Ready is true when the certificate is ready

preProvisioned
[Required]
bool

PreProvisioned is true if the certificate is preProvisioned

Restore

Appears in:

PGDGroupSpec

Restore configures the restore of a PGD group from an object store

Field Description

volumeSnapshots
VolumeSnapshotsConfiguration

The configuration for volumeSnapshot restore

barmanObjectStore [Required]
BarmanObjectStoreConfiguration

The configuration for the barman-cloud tool suite

recoveryTarget [Required]
RecoveryTarget

By default, the recovery process applies all the available WAL files in the archive (full recovery).
However, you can also end the recovery as soon as a consistent state is reached or recover to a point-
in-time (PITR) by specifying a RecoveryTarget object, as expected by PostgreSQL (i.e.,
timestamp, transaction Id, LSN, ...). More info: https://www.postgresql.org/docs/current/runtime-
config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY-TARGET

serverNames [Required]
[]string

The list of server names to be used as a recovery origin. One of these servers will be elected as the
seeding one when evaluating the recovery target, this option is only used when restore from
barmanObjectStore.

RestoreStatus

Appears in:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 76

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#barmanobjectstoreconfiguration
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#recoverytarget

PGDGroupStatus

RestoreStatus contains the current status of the restore process

Field Description

serverName [Required]
string

The name of the server to be restored

VolumeSnapshots
[Required]
[]VolumeSnapshotRestoreStatus

selected volumeSnapshots to restore

RootDNSConfiguration

Appears in:

ConnectivityConfiguration

RootDNSConfiguration describes how the FQDN for the resources should be generated

Field Description

DNSConfiguration
DNSConfiguration

(Members of DNSConfiguration are embedded into this type.) No description provided.

additional [Required]
[]DNSConfiguration

AdditionalDNSConfigurations adds more possible FQDNs for the resources

SQLMutation

SQLMutation is a series of SQL statements to apply atomically

Field Description

isApplied [Required]
[]string

List of boolean-returning SQL queries. If any of them returns false the mutation will be applied

exec [Required]
[]string

List of SQL queries to be executed to apply this mutation

type
SQLMutationType

Type determines when the SQLMutation occurs. 'always': reconcile the mutation at each
reconciliation cycle 'beforeSubgroupRaft': are executed only before the subgroupRaft is enabled If
not specified, the Type defaults to 'always'.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 77

SQLMutationType

(Alias of string)

Appears in:

SQLMutation

SQLMutationType a supported type of SQL Mutation

SQLMutations

(Alias of []github.com/EnterpriseDB/pg4k-pgd/api/v1beta1.SQLMutation)

Appears in:

PgdConfiguration

SQLMutations A list of SQLMutation

ScheduledBackupSpec

Appears in:

Backup

ScheduledBackupSpec defines the desired state of ScheduledBackup

Field Description

suspend [Required]
bool

If this backup is suspended or not

immediate [Required]
bool

If the first backup has to be immediately start after creation or not

schedule [Required]
string

The schedule does not follow the same format used in Kubernetes CronJobs as it includes an
additional second specifier, see https://pkg.go.dev/github.com/robfig/cron#hdr-
CRON_Expression_Format

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 78

backupOwnerReference [Required]
string

Indicates which ownerReference should be put inside the created backup resources.

none: no owner reference for created backup objects (same behavior as before the field was
introduced)
self: sets the Scheduled backup object as owner of the backup
cluster: set the cluster as owner of the backup

target [Required]
BackupTarget

The policy to decide which instance should perform this backup. If empty, it defaults to
cluster.spec.backup.target . Available options are empty string, primary and
prefer-standby . primary to have backups run always on primary instances, prefer-
standby to have backups run preferably on the most updated standby, if available.

method
BackupMethod

The backup method to be used, possible options are barmanObjectStore and
volumeSnapshot . Defaults to: barmanObjectStore .

online
bool

Whether the default type of backup with volume snapshots is online/hot (true , default) or
offline/cold (false) Overrides the default setting specified in the cluster field
'.spec.backup.volumeSnapshot.online'

onlineConfiguration
OnlineConfiguration

Configuration parameters to control the online/hot backup with volume snapshots Overrides the
default settings specified in the cluster '.backup.volumeSnapshot.onlineConfiguration' stanza

Field Description

ServerCertConfiguration

Appears in:

TLSConfiguration

ServerCertConfiguration contains the information to generate the certificates for the nodes

Field Description

caCertSecret [Required]
string

CACertSecret is the secret of the CA to be injected into the CloudNativePG configuration

certManager [Required]
CertManagerTemplate

The cert-manager template used to generate the certificates

ServiceTemplate

Appears in:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 79

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#backuptarget
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#backupmethod
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#onlineconfiguration

ConnectivityConfiguration

ServiceTemplate is a structure that allows the user to set a template for the Service generation.

Field Description

metadata
Metadata

Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

spec
ServiceSpec

Specification of the desired behavior of the service. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-
status

updateStrategy
ServiceUpdateStrategy

UpdateStrategy indicates how to update the services generated by this template.

ServiceUpdateStrategy

(Alias of string)

Appears in:

ServiceTemplate

ServiceUpdateStrategy defines the type for updating LoadBalancers. Allowed values are "patch" and "replace".

TLSConfiguration

Appears in:

ConnectivityConfiguration

TLSConfiguration is the configuration of the TLS infrastructure used by PGD to connect to the nodes

Field Description

mode [Required]
TLSMode

No description provided.

serverCert
[Required]
ServerCertConfiguration

The configuration for the server certificates

clientCert
[Required]
ClientCertConfiguration

The configuration for the client certificates

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 80

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#servicespec-v1-core

TLSMode

(Alias of string)

Appears in:

TLSConfiguration

TLSMode describes which mode should be used for the node to node communications

VolumeSnapshotRestoreStatus

Appears in:

RestoreStatus

VolumeSnapshotRestoreStatus the volumeSnapshot to restore

Field Description

snapshotName [Required]
string

SnapshotName is the snapshot name to restore

pvcRole [Required]
github.com/EnterpriseDB/cloud-native-
postgres/pkg/utils.PVCRole

PVCRole is the pvcRole snapshot to restore

VolumeSnapshotsConfiguration

Appears in:

Restore

VolumeSnapshotsConfiguration contains the configuration for the volumeSnapshots restore

Field Description

selector
[Required]
LabelSelector

Label selector used to select the volumeSnapshot to restore

24 Supported versions

This page lists the status for currently supported releases of EDB Postgres Distributed for Kubernetes.

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 81

https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/pg4k.v1/#pvcrole
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#labelselector-v1-meta

Support status of EDB Postgres for Kubernetes releases

Version Currently
Supported

Release
Date

End of
Life

Supported Kubernetes
Versions

Supported OpenShift
Versions

Supported Postgres
versions

1.0 Yes April 24,
2024

- 1.26 -> 1.29 4.12 -> 4.14 12 -> 16

The Postgres (operand) versions are limited to those supported by EDB Postgres Distributed (PGD).

Important

Please be aware that this page is informative only. The "Platform Compatibility" page from the EDB website contains the official list of
supported software and Kubernetes distributions.

25 Known issues and limitations

These known issues and limitations are in the current release of EDB Postgres Distributed for Kubernetes.

Postgres major version upgrades

This version of EDB Postgres Distributed for Kubernetes doesn't support major version upgrades of Postgres.

Data migration

This version of EDB Postgres Distributed for Kubernetes doesn't support migrating from existing Postgres databases.

Connectivity with PgBouncer

EDB Postgres Distributed for Kubernetes does not support using PgBouncer to pool client connection requests. This limitation applies to both the
open-source and EDB versions of PgBouncer.

Backup operations

To configure an EDB Postgres Distributed for Kubernetes environment, you must apply a PGDGroup YAML object to each Kubernetes cluster.
Applying this object creates all necessary services for implementing a distributed architecture.

If you added a spec.backup section to this PGDGroup object with the goal of setting up a backup configuration, the backup will fail unless you
also set the spec.backup.cron.schedule value.

Error output example:

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 82

https://www.enterprisedb.com/docs/pgd/latest/
https://www.enterprisedb.com/product-compatibility#bdrk8s
https://www.enterprisedb.com/docs/pgbouncer/latest/

The PGDGroup "region-a" is invalid: spec.backup.cron.schedule: Invalid value: "": Empty spec string

Workaround

To work around this issue, add a spec.backup.cron.schedule section with a schedule that meets your requirements, for example:

Known issues and limitations in EDB Postgres Distributed

All issues and limitations known for the EDB Postgres Distributed version that you include in your deployment also affect your EDB Postgres
Distributed for Kubernetes instance.

For example, if the EDB Postgres Distributed version you're using is 5.x, your EDB Postgres Distributed for Kubernetes instance will be affected by
these 5.x known issues and 5.x limitations.

spec:
 instances: 3
 proxyInstances: 2
 pgd:
 parentGroup:
 create: true
 name: world
 backup:
 configuration:
 barmanObjectStore:
 ...
 cron:
 suspend: false
 immediate: true
 schedule: "0 */5 * * *
*"

EDB Postgres Distributed for Kubernetes

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 83

https://www.enterprisedb.com/docs/pgd/5/known_issues/
https://www.enterprisedb.com/docs/pgd/5/limitations/

	1 EDB Postgres Distributed for Kubernetes
	Before you start
	Supported Kubernetes distributions
	Requirements
	API reference
	Trademarks

	2 EDB Postgres for Kubernetes Release notes
	2.1 EDB Postgres Distributed for Kubernetes 1.0.0 release notes
	Highlights of EDB Postgres Distributed for Kubernetes 1.0.0
	Features

	3 Before you start
	Kubernetes terminology
	PGD terminology
	Cloud terminology
	What to do next

	4 Use cases
	Case 1: Applications inside Kubernetes
	Case 2: Applications outside Kubernetes

	5 Architecture
	Relationship with EDB Postgres Distributed
	Relationship with EDB Postgres for Kubernetes
	Managing PGD using EDB Postgres Distributed for Kubernetes
	Proxies and routing
	PGD architectures and high availability

	Deploying PGD on Kubernetes
	Images and operands
	Kubernetes architecture
	Single Kubernetes cluster
	Multiple Kubernetes clusters

	6 Installation
	Prerequisites
	Add the repository
	Deploy the images
	Create a certificate issuer
	Red Hat OpenShift

	7 Quick start
	Part 1 - Set up the local Kubernetes playground
	Part 2 - Install EDB Postgres Distributed for Kubernetes
	Part 3 - Deploy a PGD cluster

	8 Managing EDB Postgres Distributed (PGD) databases
	PGD CLI
	Accessing the database

	9 Backup on object stores
	Common object stores
	WAL archive
	Scheduled backups
	Retention policies
	Compression algorithms
	Tagging of backup objects
	On-demand backups of a PGD node

	10 Recovery
	Prerequisite
	Recovery from an object store
	PITR from an object store
	Recovery from an object store specifying a backupID
	Recovery targets

	11 Security
	Code
	Container
	Cluster
	Role-based access control (RBAC)
	Calls to the API server made by the instance manager
	Pod security policies
	Exposed ports

	PGD
	Storage

	12 Connectivity
	Services
	Domain names resolution
	TLS configuration
	Server TLS configuration
	Client TLS configuration
	Dynamic provisioning via cert-manager
	Pre-provisioned certificates via secrets

	Connecting to a PGD cluster from an application
	Connecting from inside the cluster
	Connecting from outside the Kubernetes cluster

	13 Certificates
	14 Client TLS/SSL connections
	15 Declarative pausing and resuming
	16 EDB private image registries
	Which repository to choose?
	How to retrieve the token
	Example with docker login

	Trials
	Operand images

	17 Predefined labels
	Predefined annotations

	18 PGDGroup parting
	Deletion and finalizers
	Time limit
	Skip finalizer
	PGDGroup cleanup
	Cleanup parted node

	19 Red Hat OpenShift
	Ensuring access to EDB private registry
	Installing the operator
	Cluster-wide installation

	Creating a PGD cluster
	Using PGD in a single OpenShift cluster in a single region
	Using PGD in multiple OpenShift clusters in multiple regions

	20 Transparent Data Encryption (TDE)
	21 Examples of configuration
	23 API Reference
	Resource Types

	CertificateKeystores
	CertificatePrivateKey
	CertificateSpec
	ConditionStatus
	JKSKeystore
	KeyUsage
	LocalObjectReference
	ObjectReference
	PKCS12Keystore
	PrivateKeyAlgorithm
	PrivateKeyEncoding
	PrivateKeyRotationPolicy
	SecretKeySelector
	X509Subject
	PGDGroup
	PGDGroupCleanup
	Backup
	BackupStatus
	CNPStatus
	CertManagerTemplate
	ClientCertConfiguration
	ClientPreProvisionedCertificates
	CnpBaseConfiguration
	CnpConfiguration
	ConnectionString
	ConnectivityConfiguration
	ConnectivityStatus
	DNSConfiguration
	DiscoveryJobConfig
	InheritedMetadata
	Metadata
	NodeCertificateStatus
	NodeKindName
	NodeSummary
	NodesExtensionsStatus
	OTELConfiguration
	OTELTLSConfiguration
	PGDGroupCleanupSpec
	PGDGroupCleanupStatus
	PGDGroupSpec
	PGDGroupStatus
	PGDNodeGroupEntry
	PGDNodeGroupSettings
	PGDProxyConfiguration
	PGDProxyEntry
	PGDProxySettings
	PGDProxyStatus
	PGDStatus
	ParentGroupConfiguration
	PauseStatus
	PgdConfiguration
	PreProvisionedCertificate
	RecoverabilityPointsByMethod
	ReplicationCertificateStatus
	Restore
	RestoreStatus
	RootDNSConfiguration
	SQLMutation
	SQLMutationType
	SQLMutations
	ScheduledBackupSpec
	ServerCertConfiguration
	ServiceTemplate
	ServiceUpdateStrategy
	TLSConfiguration
	TLSMode
	VolumeSnapshotRestoreStatus
	VolumeSnapshotsConfiguration
	24 Supported versions
	Support status of EDB Postgres for Kubernetes releases

	25 Known issues and limitations
	Postgres major version upgrades
	Data migration
	Connectivity with PgBouncer
	Backup operations
	Workaround

	Known issues and limitations in EDB Postgres Distributed

