
EDB Postgres Distributed (PGD)
Version 5

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-05-09T17:40:17

6
6
6
7
9

11
12
14
14
15
16
20
22
24
30
37

43
47
54
59
60
61
64
65
66
67
68
68
69
69
70
72
74
80
83
86
91
95
95
96
99

100
100
100
101
103
104

43

1 EDB Postgres Distributed (PGD)
2 EDB Postgres Distributed release notes
2.1 EDB Postgres Distributed 5.4.1 release notes
2.2 EDB Postgres Distributed 5.4.0 release notes
2.3 EDB Postgres Distributed 5.3.0 release notes
2.4 EDB Postgres Distributed 5.2.0 release notes
2.5 EDB Postgres Distributed 5.1.0 release notes
2.6 EDB Postgres Distributed 5.0.1 release notes
2.7 EDB Postgres Distributed 5.0.0 release notes
3 Known issues
4 Terminology
5 PGD overview
6 Introducing PGD quick starts
6.1 Deploying an EDB Postgres Distributed example cluster on Docker
6.2 Deploying an EDB Postgres Distributed example cluster on Linux hosts
6.3 Deploying an EDB Postgres Distributed example cluster on AWS
6.4 Deploying an EDB Postgres Distributed example cluster on Azure and Google cloud platforms
6.5 Connecting to your database
6.6 Exploring failover handling with PGD
6.7 Exploring conflict handling with PGD
6.8 Next steps with PGD
7 Planning your PGD deployment
7.1 Choosing your architecture
7.2 Choosing a Postgres distribution
7.3 Choosing your deployment method
7.4 Other considerations
7.5 Limitations
8 Deploying and configuring EDB Postgres Distributed
8.1 Manual deployment and configuration of PGD
8.1.1 Deploying PGD manually
8.1.1.1 Step 1 - Provisioning hosts
8.1.1.2 Step 2 - Installing Postgres
8.1.1.3 Step 3 - Configuring PGD repositories
8.1.1.4 Step 4 - Installing the PGD software
8.1.1.5 Step 5 - Creating the PGD cluster
8.1.1.6 Step 6 - Checking the cluster
8.1.1.7 Step 7 - Configure proxies
8.1.1.8 Step 8 - Using PGD CLI
8.2 Deployment and management with TPA
8.2.1 Deploying PGD using TPA
8.2.1.1 Configuring a PGD cluster with TPA
8.2.1.2 Provisioning, deploying, and testing
8.3 Deploying and configuring PGD on Kubernetes
8.4 Deploying and configuring PGD on EDB BigAnimal
9 Application use
9.1 Application behavior
9.2 DML and DDL replication and nonreplication
9.3 Nodes with differences

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

105
106
106
106
107
108
109
109
110
110
111
112
114
114
115
115
116
117
118
121
122
123
124
124
126
127
136
137
139
140
140
141
142
144
145
146
153
154
154
155
158
160
161
164
170
173
174
174

9.4 General rules for applications
9.5 Timing considerations and synchronous replication
9.6 Use of table access methods (TAMs) in PGD
9.7 Feature compatibility
10 Node management
10.1 Node types
10.2 Groups and subgroups
10.3 Creating and joining PGD groups
10.4 Witness nodes
10.5 Logical standby nodes
10.6 Subscriber-only nodes and groups
10.7 Viewing PGD topology
10.8 Removing nodes and groups
10.9 Joining a heterogeneous cluster
10.10 Connection DSNs and SSL (TLS)
10.11 Decoding worker
10.12 Replication slots created by PGD
10.13 Node restart and down node recovery
10.14 Maintenance commands through proxies
11 Postgres configuration
12 DDL replication
12.1 DDL overview
12.2 DDL replication options
12.3 DDL locking details
12.4 Managing DDL with PGD replication
12.5 DDL command handling matrix
12.6 DDL and role manipulation statements
12.7 Workarounds for DDL restrictions
12.8 PGD functions that behave like DDL
13 Security and roles
13.1 Roles
13.2 Role management
13.3 PGD predefined roles
13.4 Roles and replication
13.5 Access control
14 Sequences
15 Durability
15.1 An overview of durability options
15.2 Durability terminology
15.3 Commit scopes
15.4 Commit scope rules
15.5 Comparing durability options
15.6 Group Commit
15.7 Commit At Most Once
15.8 Lag Control
15.9 PGD Synchronous Commit
15.10 Administering
15.11 Legacy synchronous replication using PGD

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

176
177
178
178
194
199
209
210
212
220
221
223
225
227
229
230
230
231
235
235
237
247
247
249
251
252
254
254
256
256
257
258
259
260
261
262
263
265
265
267
269
271
272
273
274
277
279
281

15.12 Limitations
15.13 Internal timing of operations
16 Consistency
16.1 Conflicts
16.2 Column-level conflict detection
16.3 Conflict-free replicated data types
16.4 Eager conflict resolution
17 Parallel Apply
18 Replication sets
19 Application connection management
19.1 EDB Postgres Distributed Proxy
19.2 Installing PGD Proxy
19.3 Proxies, Raft, and Raft subgroups
19.3.1 Creating Raft subgroups using TPA
19.3.2 Working with Raft subgroups and PGD CLI
19.3.3 Migrating to Raft subgroups
19.3.4 Raft elections in depth
20 Backup and recovery
21 Monitoring
21.1 OpenTelemetry integration
21.2 Monitoring through SQL
22 EDB Postgres Distributed Command Line Interface
22.1 Installing PGD CLI
22.2 Using PGD CLI
22.3 Configuring PGD CLI
22.4 Discovering connection strings
22.5 Command reference
22.5.1 check-health
22.5.2 create-proxy
22.5.3 delete-proxy
22.5.4 set-group-options
22.5.5 set-node-options
22.5.6 set-proxy-options
22.5.7 show-clockskew
22.5.8 show-events
22.5.9 show-groups
22.5.10 show-nodes
22.5.11 show-proxies
22.5.12 show-raft
22.5.13 show-replslots
22.5.14 show-subscriptions
22.5.15 show-version
22.5.16 switchover
22.5.17 verify-cluster
22.5.18 verify-settings
23 Transaction streaming
24 Testing and tuning PGD clusters
25 Stream triggers

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

287
289
290
291
291
293
296
297
298
301
302
313
322
347
366
376
378
388
390
395
397
399
401
403
410
414
414
416
418
419
422

26 PGD AutoPartition
27 Explicit two-phase commit (2PC)
28 Timestamp-based snapshots
29 Upgrading
29.1 Upgrading PGD clusters with TPA
29.2 Upgrading PGD clusters manually
29.3 Supported PGD upgrade paths
29.4 Compatibility changes
29.5 In-place Postgres major version upgrades
29.6 Application schema upgrades
29.7 Performing a Postgres major version rolling upgrade on a PGD cluster built with TPA
30 PGD reference
30.1 User visible catalogs and views
30.2 System functions
30.3 PGD settings
30.4 Node management
30.5 Node management interfaces
30.6 Routing functions
30.7 Commit scopes
30.8 Replication set management
30.9 Replication set membership
30.10 DDL replication filtering
30.11 Testing and tuning commands
30.12 Global sequence management interfaces
30.13 Autopartition
30.14 Stream triggers reference
30.14.1 Stream triggers manipulation interfaces
30.14.2 Stream triggers row functions
30.14.3 Stream triggers row variables
30.15 Internal catalogs and views
30.16 Internal system functions

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

1 EDB Postgres Distributed (PGD)

EDB Postgres Distributed (PGD) provides multi-master replication and data distribution with advanced conflict management, data-loss protection, and throughput
up to 5X faster than native logical replication. It enables distributed Postgres clusters with high availability up to five 9s.

By default, EDB Postgres Distributed uses asynchronous replication, applying changes on the peer nodes only after the local commit. You can configure additional
levels of synchronicity between different nodes, groups of nodes, or all nodes by configuring Group Commit, CAMO, or Eager Replication.

Compatibility

EDB Postgres Distributed 5 is compatible with

Package Versions

Community PostgreSQL 12-16

EDB Postgres Extended Server 12-16

EDB Postgres Advanced
Server

12-16

Postgres 16 supportPostgres 16 support

Postgres 16 support is only available in EDB Postgres Distributed 5.3 and later

For feature compatibility with compatible servers, see Choosing a Postgres Distribution.

2 EDB Postgres Distributed release notes

The EDB Postgres Distributed documentation describes the latest version of EDB Postgres Distributed 5, including minor releases and patches. The release notes
provide information on what was new in each release. For new functionality introduced in a minor or patch release, the content also indicates the release that
introduced the feature.

Release Date EDB Postgres Distributed BDR extension PGD CLI PGD Proxy

03 Apr 2024 5.4.1 5.4.1 5.4.0 5.4.0

05 Mar 2024 5.4.0 5.4.0 5.4.0 5.4.0

14 Nov 2023 5.3.0 5.3.0 5.3.0 5.3.0

04 Aug 2023 5.2.0 5.2.0 5.2.0 5.2.0

16 May 2023 5.1.0 5.1.0 5.1.0 5.1.0

21 Mar 2023 5.0.1 5.0.0 5.0.1 5.0.1

21 Feb 2023 5.0.0 5.0.0 5.0.0 5.0.0

2.1 EDB Postgres Distributed 5.4.1 release notes

Released: 03 Apr 2024

EDB Postgres Distributed version 5.4.1 is a minor version bug-fix release of EDB Postgres Distributed.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

https://www.enterprisedb.com/blog/performance-improvements-edb-postgres-distributed

Recommended upgradeRecommended upgrade

We recommend that all users of PGD 5 upgrade to PGD 5.4.1. See PGD/TPA upgrades for details.

Bug fixes

Component Version Description

Ad
dre
sse
s

BDR 5.4.1

Fixed WAL retention logic: prevent a PGD node from running out of disk space due to a bug in 5.4.0 in combination with
Postgres 16, PGE 16, and EPAS 16.

We now make sure WAL gets properly cleaned even after 4 GB of WAL produced on a node. A change in 5.4.0 caused WAL to
be retained forever after that point. This issue affects only release PGD 5.4.0 in combination with Postgres 16, PGE 16, and
EPAS 16.

2.2 EDB Postgres Distributed 5.4.0 release notes

Released: 05 Mar 2024

EDB Postgres Distributed version 5.4.0 is a minor version of EDB Postgres Distributed.

Recommended upgradeRecommended upgrade

We recommend that all users of PGD 5 upgrade to PGD 5.4. See PGD/TPA upgrades for details.

Highlights of EDB Postgres Distributed 5.4.0

Highlights of this 5.4.0 release include improvements to:

group commit, aiming to optimize performance by minimizing the effect of a node’s downtime and simplifying overall operating of PGD clusters.
apply_delay, enabling the creation of a delayed read-only replica for additional options for disaster recovery and to mitigate the impact of human error such
as accidental DROP table statements

Compatibility

EDB Server version compatibilityEDB Server version compatibility

This version requires the recently released Postgres versions 14.10, 15.4, or 16.1 (or later) of EDB Postgres Advanced Server or EDB Postgres Extended
Server. No such restrictions exist for PostgreSQL Server.

Package managers on Debian, RHEL, and SLES pull in the required EDB Postgres Advanced Server or EDB Postgres Extended upgrades with an upgrade of
EDB Postgres Distributed.

Features

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

Component Version Description
Addre
sses

BDR 5.4.0 Automatically detect and synchronize all available nodes to the furthest ahead node for transactions originating from failed
or disconnected node.

BDR 5.4.0 Automatic resolution of pending group commit transactions when the originating node fails or disconnects, ensuring
uninterrupted transaction processing within the cluster.

BDR 5.4.0 Added ability to set apply_delay group option on sub-groups, enabling adding of delayed subscriber-only nodes.

BDR 5.4.0 Loading data using EDB*Loader (except direct mode) is now supported.

Bug fixes

Component Version Description
Addr
esse
s

BDR 5.4.0 Fixed memory leaks when running a query on some or all nodes.

BDR 5.4.0 Resolved an issue of high CPU usage for consensus processes. RT97
649

BDR 5.4.0 Improved WAL retention logic when a part_node occurs.

BDR 5.4.0 Witness nodes will automatically not synchronize structure when joining a group.

BDR 5.4.0 bdr.create_node() / bdr.alter_node() now give a hint when an invalid node kind is used.

BDR 5.4.0 Fixed transactions PREPARE/COMMIT/ABORT order with Parallel Apply enabled.

BDR 5.4.0
DDL replication now takes into account more of Postgres configuration options that are set in the original session or
transaction in order to provide more consistent results of the DDL execution. Added standard_conforming_strings ,
edb_redwood_date , default_with_rowids and check_function_bodies .

BDR 5.4.0 Improved pgd_bench cluster initialization and commandline help output.

BDR 5.4.0 Restoring a node group from a consensus snapshot correctly applies option changes (number of writers, streaming and
apply_delay) to local subscriptions.

BDR 5.4.0 bdr_init_physical: fixed debug logging of pg_ctl enabling output capture for debugging purposes.

BDR 5.4.0 Fix assertion failure when TargetColumnMissing conflict occurs in a Group Commit transaction.

BDR 5.4.0 Fix detection of UpdateOriginChange conflict to be more accurate.

BDR 5.4.0 Support timeout for normal Group Commit transaction.

BDR 5.4.0 Fix error handling in writer when there are lock timeouts or conflicts or deadlocks with and without group commit
transactions.

BDR 5.4.0 Allow the origin of group commit transactions to wait for responses from all the required nodes before taking an abort
decision.

BDR 5.4.0 Eager transactions abort correctly after Raft was disabled or not working and has recovered. RT10
1055

BDR 5.4.0 Increase default bdr.raft_keep_min_entries to 1000 from 100.

BDR 5.4.0 Allow the origin of group commit transactions to wait for responses from all the required nodes before taking an abort
decision

BDR 5.4.0 Run ANALYZE on the internal raft tables. RT97
735

BDR 5.4.0 Fix segfault in I2PC concurrent abort case. RT93
962

BDR 5.4.0 Avoid bypassing other extensions in BdrProcessUtility when processing COPY..TO.
RT99
345

BDR 5.4.0 Ensure that consensus connection are handled correctly. RT97
649

BDR 5.4.0 Fix memory leaks while running monitoring queries.

RT99
231,
RT95
314

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

BDR 5.4.0 The bdr.metrics_otel_http_url and bdr.trace_otel_http_url options are now validated at assignment
time.

BDR 5.4.0
When bdr.metrics_otel_http_url and bdr.trace_otel_http_url don't include paths, /v1/metrics and
/v1/traces are used respectively.

BDR 5.4.0 Setting bdr.trace_enable to true is no longer required to enable OTEL metrics collection.

Proxy 5.4.0 Use route_dsn and perform sslpassword processing while extracting write leader address. RT99
700

Proxy 5.4.0 Log client and server addresses at debug level in proxy logs.

Component Version Description
Addr
esse
s

2.3 EDB Postgres Distributed 5.3.0 release notes

Released: 14 Nov 2023

EDB Postgres Distributed version 5.3.0 is a minor version of EDB Postgres Distributed.

Recommended upgradeRecommended upgrade

We recommend that all users of PGD 5 upgrade to PGD 5.3. See PGD/TPA upgrades for details.

Highlights of EDB Postgres Distributed 5.3.0

Support for PostgreSQL 16 server, EDB Postgres Extended Server 16, and EDB Postgres Advanced Server 16

Compatibility

EDB Server version compatibilityEDB Server version compatibility

This version requires the recently released Postgres versions 14.10, 15.4, or 16.1 (or later) of EDB Postgres Advanced Server or EDB Postgres Extended
Server. No such restrictions exist for PostgreSQL Server.

Package managers on Debian, RHEL, and SLES pull in the required EDB Postgres Advanced Server or EDB Postgres Extended upgrades with an upgrade of
EDB Postgres Distributed.

Features

Component Version Description Addresses

PGD 5.3.0 Added support for PostgreSQL 16 server, EDB Postgres Extended Server 16, and EDB Postgres Advanced Server
16.

Enhancements

Component Version Description Addresses

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

Proxy 5.3.0 Added the default service unit file to package

BDR 5.3.0 Dependencies on EDB Postgres Advanced Server or EDB Postgres Extended are now reflected in
packages.

Component Version Description Addresses

Bug fixes

Component Version Description
Addr
esse
s

BDR 5.3.0 Ensure that the WalSender process doesn't request locks on the partitions, thus avoiding a deadlock with user process
waiting on sync commit.

RT97
952

BDR 5.3.0 Consider only CAMO transactions to be asynchronous when the CAMO setup was degraded to local mode. This solves the
split-brain problem when deciding fate of transactions that happened during failover.

RT78
928

BDR 5.3.0 Handle partitions with different attribute numbers when batch inserting. RT99
115

BDR 5.3.0 Fixed unsafe CAMO decisions in remote_write mode.

BDR 5.3.0 Taskmgr process now respects SIGINT.

BDR 5.3.0 Speeded up manager process startup by limiting the amount of WAL read for loading commit decisions.

BDR 5.3.0 Physical joins now clean up stale records in bdr.taskmgr_local_work_queue .

BDR 5.3.0 Fixed a bug in copying bdr.autopartition_rules during logical join.

BDR 5.3.0 Override bdr.ddl_replication=off in taskmgr worker.

BDR 5.3.0 Avoid a potential deadlock between bdr.autopartition_wait_for_partitions() and taskmgr.

BDR 5.3.0 Fixed writer missing updates in streaming mode with TDE enabled.

BDR 5.3.0 Block new EDB Postgres Advanced Server automatic partitioning on PGD cluster.

BDR 5.3.0 Allow existing automatically partitioned tables when cluster is created or upgraded.

BDR 5.3.0 Block PGD autopartition on EDB Postgras Advanced Server INTERVAL partitioned table.

BDR 5.3.0 Ensure that replication doesn't break when bdr.autopartition() is invoked on a mixed version cluster running with
3.7.23 and 4.3.3/5.3

BDR 5.3.0 Fixed default selective replication behavior for data groups. The data groups are supposed to publish only replication sets of
the group or any parent groups by default, which mirrors what they subscribe to.

BDR 5.3.0 Fixed memory leak in LCR file TDE encryption.

BDR 5.3.0 Fixed memory leak in streaming transaction processing.

BDR 5.3.0 Allow force parting of nodes that are already being parted normally.

BDR 5.3.0 PART_CATCHUP is now more resilient to replication slot and node_catchup_info conflict.

BDR 5.3.0 Fixed row filter failure for partitions created after a table column was dropped. RT95
149

BDR 5.3.0 Avoid aborting a group commit transaction on receiving the first abort response. The other nodes are given a chance to
respond, and transaction can succeed if the required responses are received.

BDR 5.3.0 Ensure that replication receiver worker reloads configuration correctly when pg_reload_conf() is called.

BDR 5.3.0 Prevent duplicate Raft request ID generation which could break replication.

BDR 5.3.0 Fixed several rare memory access issues that could potentially cause crashes of workers.

BDR 5.3.0 Fixed issue where explicit 2PC transactions aborted earlier when encountering conflicts. RT92
897

CLI 5.3.0 Fixed verify-settings command if the shared_preload_libraries GUC contains file path.

CLI 5.3.0 Show replslots status as Critical in check-health command when PGD cluster is reduced to just a witness node.

Proxy 5.3.0 Always set the server connection close behavior (setLinger(0)). Earlier it was set only on client error.

Proxy 5.3.0 Fixed the logs fill up issue when all nodes are down in a PGD cluster

Utilities 1.2.0 Removed the preupgrade step in bdr_pg_upgrade that sets the CONNECTION LIMIT to 0 at database level

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

2.4 EDB Postgres Distributed 5.2.0 release notes

Released: 04 Aug 2023

EDB Postgres Distributed version 5.2.0 is a minor version of EDB Postgres Distributed.

Highlights of EDB Postgres Distributed 5.2.0

Parallel Apply is now available for PGD’s Commit at Most Once (CAMO) synchronous commit scope and improving replication performance.
Parallel Apply for native Postgres asynchronous and synchronous replication has been improved for workloads where the same key is being modified
concurrently by multiple transactions to maintain commit sequence and avoid deadlocks.
PGD Proxy has added HTTP(S) APIs to allow the health of the proxy to be monitored directly for readiness and liveness. See Proxy health check.

Recommended upgradeRecommended upgrade

We recommend that users of PGD 5.1 upgrade to PGD 5.2.

PostgreSQL version compatibilityPostgreSQL version compatibility

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.8, and later.

Component Version Type Description

BDR 5.2.0 Feature Added Parallel Apply for synchronous commit scopes with CAMO.

BDR 5.2.0 Feature Allow multiple SYNCHRONOUS_COMMIT clauses in a commit scope rule.

BDR 5.2.0 Enhancement BDR extension now allows transaction streaming with SYNCHRONOUS_COMMIT and LAG CONTROL commit scopes.

BDR 5.2.0 Enhancement Improved handling of concurrent workloads with Parallel Apply.

BDR 5.2.0 Enhancement Modified bdr.stat_subscription for new columns.

BDR 5.2.0 Bug fix Fixed an issue by allowing a logical join of node if there are foreign key constraints violations. (RT91745)

BDR 5.2.0 Bug fix Changed group_raft_details view to avoid deadlock possibility.

BDR 5.2.0 Bug fix Fixed an issue by adding ability to log the extension upgrade.

BDR 5.2.0 Bug fix Added check for conflicting node names.

BDR 5.2.0 Bug fix Fixed a crash during Raft manual snapshot restore.

BDR 5.2.0 Bug fix Fixed an issue whereby BDR extension was attempting to establish consensus connections to parting or parted
nodes.

BDR 5.2.0 Bug fix Fixed tcp_user_timeout GUC to use the correct unit.

BDR 5.2.0 Bug fix Fixed the consensus snapshot compatibility with PGD 3.7. (RT93022)

BDR 5.2.0 Bug fix Fixed an issue whereby a crash occurred when BDR extension is used with pgaudit.

BDR 5.2.0 Bug fix Fixed an issue by skipping parting synchronization to witness node.

BDR 5.2.0 Bug fix Fixed an issue by now generating correct keepalive parameters in connection strings.

BDR 5.2.0 Bug fix Enabled various scenarios of switching nodes between groups and their subgroups, for example, transition node
from a group to any of the nested subgroups.

BDR 5.2.0 Bug fix Reduced the amount of WAL produced by consensus on idle server.

BDR 5.2.0 Bug fix Fixed deadlock on autopartition catalogs when a concurrent DROP EXTENSION is executing.

BDR 5.2.0 Bug fix Fixed sporadic failure when dropping extension after node restart

BDR 5.2.0 Bug fix Added a workaround for crash due to pgaudit bug.

BDR 5.2.0 Bug fix Fixed deadlock between consensus and global monitoring queries.

BDR 5.2.0 Bug fix Fixed query cancellation propagation across bdr.run_on_all_nodes .

BDR 5.2.0 Bug fix Fixed an issue by disallowing invoking bdr.run_on_nodes() , bdr.run_on_group() and
bdr.run_on_all_nodes() on parted nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

CLI 5.2.0 Enhancement Added new GUCs verification in verify-settings command.

CLI 5.2.0 Bug fix Fixed an issue by truncating the long value of GUC in tabular output of verify-settings .

CLI 5.2.0 Bug fix Fixed connect_timeout issue when sslmode=allow or sslmode=prefer by upgrading database driver
library version.

Proxy 5.2.0 Feature Added HTTP(S) APIs for Proxy health check.

Proxy 5.2.0 Enhancement Improved route change events handling mechanism.

Proxy 5.2.0 Enhancement Added retry mechanism on consensus query error.

Proxy 5.2.0 Bug fix Fixed connect_timeout issue when sslmode=allow or sslmode=prefer by upgrading database driver
library version.

Component Version Type Description

2.5 EDB Postgres Distributed 5.1.0 release notes

Released: 16 May 2023

EDB Postgres Distributed version 5.1.0 is a minor version of EDB Postgres Distributed. This version addresses security vulnerabilities in dependencies for PGD Proxy
and PGD CLI.

Highlights of EDB Postgres Distributed 5.1

Synchronous CommitSynchronous Commit is now available in PGD’s unified COMMIT SCOPE syntax. Modeled on Postgres’s legacy synchronous commit option, PGD Synchronous
Commit allows DBAs to take advantage of the finer-grained commit and sync management. This addition complements the existing Group Commit, CAMO,
and Lag Control commit scope options.

Fixes to priority-based proxy routingpriority-based proxy routing now enable better handling of failover. You can now configure the grace period for proxies through PGD CLI, allowing
you to tune proxy response to losing the Raft leader. To accompany that, Raft events are visible in the PGD CLI’s show-events command, showing the
event, source, and subtype.

bdr.drop_node_group() adds support for removing empty node groups using the PGD SQL interface.

Recommended upgradeRecommended upgrade

We recommend that users of PGD 5.0 upgrade to PGD 5.1.

PostgreSQL version compatibilityPostgreSQL version compatibility

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.8, and later.

Component Version Type Description

BDR 5.1.0 Feature Added pid to the log message emitted upon writer process death.

BDR 5.1.0 Feature Added group name in the bdr.event_summary view.

BDR 5.1.0 Feature Added SLES support. SLES 15sp4 is now supported.

BDR 5.1.0 Feature
Added subscription status column to the group subscription summary view.
This feature allows you to distinguish whether NULL values are due to a node being down or a subscription being
disabled.

BDR 5.1.0 Feature
Added NOT group filter to Group Commit.
This feature allows you to invert the meaning of a group filter to include all nodes except the ones in specified
groups.

BDR 5.1.0 Feature Added bdr.drop_node_group .
You can now drop empty node groups.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

BDR 5.1.0 Feature
Added SYNCHRONOUS_COMMIT to commit scopes.
This feature allows dynamic synchronous_commit-like behavior for replication.

BDR 5.1.0 Feature Added event_node_name column to bdr.event_summary .

BDR 5.1.0 Feature
Added write leader election to event history.
Added information about the node that's elected as a write leader for each group in the event_history catalog. Also
improved the reporting of raft instance ids in the event_detail of event_history.

BDR 5.1.0 Feature Added ability to allow exporting and importing of other Raft instance snapshots.
This feature allows exporting and importing snapshots for other instances and not only top Raft instances.

BDR 5.1.0 Bug fix Fixed memory leak in consensus process. (RT91830)

BDR 5.1.0 Bug fix
Fixed issue where a node can be inconsistent with the group after rejoining.
If a node was part of a subgroup, parted, and then rejoined to the group, it could be inconsistent with the group. The
changes from some nodes of the group were replayed from a wrong starting point, resulting in potential data loss.

BDR 5.1.0 Bug fix Fixed join and replication when SDW and standby_slot_names are set. (RT89702, RT89536)

BDR 5.1.0 Bug fix Fixed spurious warnings when processing sequence options. (RT90668)

BDR 5.1.0 Bug fix Fixed upgrades for nodes with CRDTs.

BDR 5.1.0 Bug fix Adjusted lag tracking parameters for LCRs from pg_stat_replication.

BDR 5.1.0 Bug fix
Adjusted node routing options defaults based on node kind.
This change is related only to the display of the information and not the behavior. For example, witness nodes aren't
marked as candidates for receiving writes.

BDR 5.1.0 Bug fix All sequences are now converted to "distributed" during create node.

BDR 5.1.0 Bug fix Fixed streaming transactions with standby_slot_names .
This might have led to a subscriber-only node getting ahead of a data node.

BDR 5.1.0 Bug fix Made priority work properly for routing selection.
Previously, node priority was working only if there wasn't a previous leader, which is never the case on failover.

BDR 5.1.0 Bug fix Fixed the recording of its join as complete for the first node.

BDR 5.1.0 Bug fix Disabled tracing by default.
Tracing was enabled only for initial debugging and was meant to be disabled before 5.0 release.

BDR 5.1.0 Bug fix Added support for reload configuration for the pglogical receiver.
When the server receives a reload signal, the pglogical receiver reloads and applies the configuration changes.

BDR 5.1.0 Bug fix Improved missing instance error message in bdr.monitor_group_raft() .

BDR 5.1.0 Bug fix

Implemented consistent use of tcp keepalives across all BDR connections.
This change added the following GUCs:
bdr.global_connection_timeout
bdr.global_keepalives
bdr.global_keepalives_idle
bdr.global_keepalives_interval
bdr.global_keepalives_count
bdr.global_tcp_user_timeout

The defaults are set to fairly conservative values and are subject to adjustments in the future patches.

BDR 5.1.0 Bug fix Closed Raft connections on no activity after a timeout.
This uses wal_sender_timeout/wal_receiver_timeout underneath.

BDR 5.1.0 Bug fix Made backends that receive Raft messages easily identifiable.
Added information in the log message related to Raft backends.

BDR 5.1.0 Bug fix Fixed issue whereby Parallel Apply might slow down under heavy load.

BDR 5.1.0 Enhancement
Restarting sync workers is now avoided.
This fix is to prevent the node join from failing when config changes are made that signal the restart of subscription
workers.

PGD Proxy 5.1.0 Enhancement application_name is now set to proxy name if it wasn't set by the user in the connection string for internal db
connections.

PGD Proxy 5.1.0 Enhancement

Implemented the new consensus_grace_period proxy option, which is the duration for which a proxy
continues to route to the current write leader (if it's available) upon loss of a Raft leader. If the new Raft leader isn't
elected during this period, the proxy stops routing. If set to 0s , the proxy stops routing immediately.

PGD Proxy 5.1.0 Bug fix Changed from blocking when write leader is unavailable to closing the new client connections.

CLI 5.1.0 Enhancement Enhanced the show-events command to show Raft events, event source and subtype.

Component Version Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

CLI 5.1.0 Enhancement Improved clockskew estimation in show-clockskew and check-health commands.

CLI 5.1.0 Feature Added support to view and set consensus_grace_period proxy option.

Utilities 1.1.0 Bug fix Implemented handling of uninitialized physical replication slots issue.

Component Version Type Description

2.6 EDB Postgres Distributed 5.0.1 release notes

Released: 21 Mar 2023

EDB Postgres Distributed version 5.0.1 is a patch version of EDB Postgres Distributed. This version addresses security vulnerabilities in dependencies for PGD-Proxy
and PGD-CLI.

Component Version Type Description

CLI 5.0.1 Change Upgrade 3rd party dependencies to fix Github dependabot alerts

Proxy 5.0.1 Change Upgrade 3rd party dependencies to fix Github dependabot alerts

2.7 EDB Postgres Distributed 5.0.0 release notes

Released: 21 Feb 2023

EDB Postgres Distributed version 5.0.0 is a is a new major version of EDB Postgres Distributed. This version brings major new features and compatibility changes.

The highlights of this release include:

Flexible deployment architectures
Enhanced routing capabilities
Unified replication durability configuration
Support for EDB Advanced Storage Pack
Support for TDE with EDB Postgres Advanced 15 and EDB Postgres Extended 15
Integration with OpenTelemetry
Improved transaction tracking performance (Group Commit, CAMO)
Postgres 12 to 15 compatiblity

Component Version Type Description

PGD 5.0.0 Feature Flexible Deployment Architectures
Redefined Always-ON to support wider variety of deployments.

BDR 5.0.0 Feature
Enhanced routing capabilities
BDR cluster elects a write leader for every group (and associated location) using per group Raft when routing is
enabled for the group. It takes care of write leader failover and provides SQL commands to change a write leader.

BDR 5.0.0 Feature

Support for EDB Advanced Storage Pack
EDB Advanced Storage Pack provides advanced storage options for PostgreSQL databases in the form of table access
method (TAM) extensions. These storage options can enhance the performance and reliability of databases without
requiring application changes.

BDR 5.0.0 Feature
Unified replication durability configuration
The durability options such as Group Commit, CAMO, Eager Replication or Lag Control are now all configured through
commit scope configuration.

BDR 5.0.0 Feature

EDB Postgres Advanced and EDB Postgres Extended TDE support
EDB Postgres Distributed 5 fully supports the Transparent Data Encryption feature in EDB Postgres Advanced and
EDB Postgres Extended.

BDR 5.0.0 Feature
Integration with OpenTelemetry
BDR extension can now send monitoring metrics as well as traces to the OpenTelemetry collector for better
integration with existing monitoring solutions.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/
https://www.enterprisedb.com/docs/tde/latest

BDR 5.0.0 Feature Postgres 15 compatibility
EDB Postgres Distributed 5 is compatible with Postgres 12 to 15.

BDR 5.0.0 Feature

Improved Cluster Event Management
The bdr.worker_errors and bdr.state_journal_details view were replaced by unified
bdr.event_summary which also include changes in Raft role for the local node. In the future additional events

may be added to it.

BDR 5.0.0 Change
Improved transaction tracking performance
Transaction tracking now uses shared memory instead of bdr.internal_node_pre_commit catalog which
considerably improves performance as it does not incur additional I/O.

BDR 5.0.0 Feature
Support non-default replication sets with Decoding Worker
Allows Decoding Worker feature to be used in clusters using non-default replication sets like asymmetric replication
setup.

BDR 5.0.0 Feature

Add support for HASH partitioning in Autopartition
Extend autopartition/autoscale to support HASH partitioning. Many of things that are required for RANGE
partitioning are not needed for HASH partitioning. For example, we expect to create all HASH partitions in one go (at
least for the current work; later we may change this). We don't expect HASH partitions to be moved to a different
tablespace or dropped. So data retention policies don't apply for HASH partitioning.

BDR 5.0.0 Feature
Add a new benchmarking utility pgd_bench
The utility supports benchmarking CAMO transactions and in future releases will be used for benchmarking PGD
specific workloads.

BDR 5.0.0 Change Nodes now have a node kind
This better differentiates different kinds of nodes such as data, witness, subscriber-only and standby.

BDR 5.0.0 Change

Separate Task Management from Autopartition
In this release, the autopartition work queue mechanism has been moved to a separate module called Task Manager
(taskmgr). The task manager is responsible for creating new tasks and executing the ones created by the local node or
the task manager leader node. The autopartition worker is thus renamed as taskmgr worker process in this release.

In the older PGD releases, the Raft leader was responsible for creating new work items. But that creates a problem
because a witness node can become a Raft leader while it does not have the full view of the cluster objects. In this
release, we have introduced a concept of Task Manager Leader node. The node is selected automatically by PGD, but
for upgraded clusters, its important to set the node_kind property for all nodes in the cluster. The user is expected
to do this manually after upgrading to the latest PGD version by calling bdr.alter_node_kind() SQL function for each
node.

BDR 5.0.0 Deprecation bdr.assess_lock_statement and bdr.assess_update_replica_identity are deprecated.

Proxy 5.0.0 Feature
PGD built-in proxy
A TCP layer 4, pass through proxy for PGD cluster using routing capabilities of BDR.

CLI 5.0.0 Feature

PGD cluster verification
CLI supports two new commands verify-settings and verify-cluster . verify-settings verifies
the PostgreSQL configuration of each node in a PGD cluster against the recommendations. verify-cluster
verifies the PGD cluster architectures against the flexible architecture deployment recommendations.

CLI 5.0.0 Feature

Proxy management and configuration
pgd supports create-proxy , delete proxy , set-group-options , set-node-options , set-
proxy-options , show-proxies , show-groups and switchover to configure and manage Proxy per
group.

CLI 5.0.0 Change
Remove show-camo command and remove CAMO check from check-health command. Support for commit
scopes in CLI will be added in a future release.

CLI 5.0.0 Change Modify output of show-nodes and show-raft commands to accomodate routing capabilities.

Component Version Type Description

3 Known issues

These are currently known issues in EDB Postgres Distributed 5. These known issues are tracked in PGD's ticketing system and are expected to be resolved in a
future release.

If the resolver for the update_origin_change conflict is set to skip , synchronous_commit=remote_apply is used, and concurrent updates
of the same row are repeatedly applied on two different nodes, then one of the update statements might hang due to a deadlock with the PGD writer. As

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

mentioned in Conflicts, skip isn't the default resolver for the update_origin_change conflict, and this combination isn't intended to be used in
production. It discards one of the two conflicting updates based on the order of arrival on that node, which is likely to cause a divergent cluster. In the rare
situation that you do choose to use the skip conflict resolver, note the issue with the use of the remote_apply mode.

The Decoding Worker feature doesn't work with CAMO/Eager/Group Commit. Installations using CAMO/Eager/Group Commit must keep
enable_wal_decoder disabled.

Lag Control doesn't adjust commit delay in any way on a fully isolated node, that is, in case all other nodes are unreachable or not operational. As soon as at
least one node is connected, replication Lag Control picks up its work and adjusts the PGD commit delay again.

For time-based Lag Control, PGD currently uses the lag time (measured by commit timestamps) rather than the estimated catchup time that's based on
historic apply rates.

Changing the CAMO partners in a CAMO pair isn't currently possible. It's possible only to add or remove a pair. Adding or removing a pair doesn't need a
restart of Postgres or even a reload of the configuration.

Group Commit can't be combined with CAMO or Eager All-Node Replication. Eager Replication currently works only by using the global PGD commit scope.

Transactions using Eager Replication can't yet execute DDL. The TRUNCATE command is allowed.

Parallel apply isn't currently supported in combination with Group Commit. Make sure to disable it when using Group Commit by either:
Setting num_writers to 1 for the node group using bdr.alter_node_group_config .
Using the GUC bdr.writers_per_subscription . See Configuration of generic replication.

There currently is no protection against altering or removing a commit scope. Running transactions in a commit scope that's concurrently being altered or
removed can lead to the transaction blocking or replication stalling completely due to an error on the downstream node attempting to apply the transaction.
Ensure that any transactions using a specific commit scope have finished before altering or removing it.

The PGD CLI can return stale data on the state of the cluster if it's still connecting to nodes that were previously parted from the cluster. Edit the pgd-cli-
config.yml file, or change your --dsn settings to ensure only active nodes in the cluster are listed for connection.

Details of other design or implementation limitations are also available.

4 Terminology

This terminology list includes terms associated with EDB Postgres Distributed that you might be unfamiliar with.

Asynchronous replication

A type of replication that copies data to other PGD cluster members after the transaction completes on the origin node. Asynchronous replication can provide higher
performance and lower latency than synchronous replication. However, asynchronous replication can see a lag in how long changes take to appear in the various
cluster members. While the cluster will be eventually consistent, there's potential for nodes to be apparently out of sync with each other.

Commit scopes

Rules for managing how transactions are committed between the nodes and groups of a PGD cluster. Used to configure synchronous replication, Group Commit,
CAMO, Eager, lag control, and other PGD features.

CAMO or commit-at-most-once

High-value transactions in some applications require that the application successfully commits exactly once, and in the event of failover and retrying, only once. To
ensure this happens in PGD, CAMO can be enabled, allowing the application to actively participate in the transaction.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16

https://www.enterprisedb.com/docs/pgd/5/limitations

Conflicts

As data is replicated across the nodes of a PGD cluster, there might be occasions when changes from one source clash with changes from another source. This is a
conflict and can be handled with conflict resolution. (Conflict resolution is a set of rules that decide which source is correct or preferred.) Conflicts can also be
avoided with conflict-free data types.

Consensus

How Raft makes group-wide decisions. Given a number of nodes in a group, Raft looks for a consensus of the majority (number of nodes divided by 2 plus 1) voting
for a decision. For example, when a write leader is being selected, a Raft consensus is sought over which node in the group will be the write leader. Consensus can
be reached only if there's a quorum of voting members.

Cluster

Generically, a cluster is a group of multiple redundant systems arranged to appear to end users as one system. See also PGD cluster and Postgres cluster.

DDL (data definition language)

The subset of SQL commands that deal with defining and managing the structure of a database. DDL statements can create, modify, and delete objects (that is,
schemas, tables, and indexes) in the database. Common DDL commands are CREATE, ALTER, and DROP.

DML (data manipulation language)

The subset of SQL commands that deal with manipulating the data held in a database. DML statements can create, modify, and delete rows in tables in the database.
Common DML commands are INSERT, UPDATE, and DELETE.

Eager

A synchronous commit mode that avoids conflicts by detecting incoming potentially conflicting transactions and “eagerly” aborts one of them to maintain
consistency.

Eventual consistency

A distributed computing consistency model stating changes to the same item in different cluster members will eventually converge to the same value. Asynchronous
logical replication with conflict resolution and conflict-free replicated data types exhibit eventual consistency in PGD.

Failover

The automated process that recognizes a failure in a highly available database cluster and takes action to maintain consistency and availability. The goal is to
minimize downtime and data loss.

Group commit

A synchronous commit mode that requires more than one PGD node to successfully receive and confirm a transaction at commit time.

Immediate consistency

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

A distributed computing model where all replicas are updated synchronously and simultaneously. This model ensures that all reads after a write completes will see
the same value on all nodes. The downside of this approach is its negative impact on performance.

Logical replication

A more efficient method of replicating changes in the database. While physical streaming replication duplicates the originating database’s disk blocks, logical
replication instead takes the changes made, independent of the underlying physical storage format, and publishes them to all systems that subscribed to see the
changes. Each subscriber then applies the changes locally. Logical replication can't support most DDL commands.

Node

A general term for an element of a distributed system. A node can play host to any service. In PGD, PGD nodes run a Postgres database, the BDR extension, and
optionally a PGD Proxy service.

Typically, for high availability, each node runs on separate physical hardware, but that's not always the case. For example, a proxy might share a hardware node with
a database.

Node groups

PGD nodes in PGD clusters can be organized into groups to reflect the logical operation of the cluster. For example, the data nodes in a particular physical location
can be part of a dedicated node group for the location.

PGD cluster

A group of multiple redundant database systems and proxies arranged to avoid single points of failure while appearing to end users as one system. PGD clusters can
be run on Docker instances, cloud instances or “bare” Linux hosts, or a combination of those platforms. A PGD cluster can also include backup and proxy nodes. The
data nodes in a cluster are grouped together in a top-level group and into various local node groups.

PGD node

In a PGD cluster are nodes that run databases and participate in the PGD cluster. A typical PGD node runs a Postgres database, the BDR extension, and optionally a
PGD Proxy service. PGD modes are also referred to as data nodes, which suggests they store data. However, some PGD nodes, specifically witness nodes, don't do
that.

Physical replication

By making an exact copy of database disk blocks as they're modified to one or more standby cluster members, physical replication provides an easily implemented
method to replicate servers. But there are restrictions on how it can be used. For example, only one master node can run write transactions. Also, the method
requires that all cluster members are on the same major version of the database software with the same operating system and CPU architecture.

Postgres cluster

Traditionally, in PostgreSQL, a number of databases running on a single server is referred to as a cluster (of databases). This kind of Postgres cluster isn't highly
available. To get high availability and redundancy, you need a PGD cluster.

Quorum

When a Raft consensus is needed by a PGD cluster, a minimum number of voting nodes participating in the vote are needed. This number is called a quorum. For
example, with a 5-node cluster, the quorum is 3 nodes in the cluster voting. A consensus is 5/2+1 nodes, 3 nodes voting the same way. If there are only 2 voting
nodes, then a consensus is never established.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

Replicated available fault tolerance (Raft)

A consensus algorithm that uses votes from a quorum of machines in a distributed cluster to establish a consensus. PGD uses Raft within groups (top-level or local)
to establish the node that's the write leader.

Read scalability

The ability of a system to handle increasing read workloads. For example, PGD can introduce one or more read replica nodes to a cluster and have the application
direct writes to the primary node and reads to the replica nodes. As the read workload grows, you can increase the number of read replica nodes to maintain
performance.

Subscription

PGD nodes will publish changes being made to data to nodes that are interested. Other PGD nodes will ask to subscribe to those changes. This creates a
subscription and is the mechanism by which each node is updated. PGD nodes bidirectionally subscribe to other PGD node's changes.

Switchover

A planned change in connection between the application or proxies and the active database node in a cluster, typically done for maintenance.

Synchronous replication

When changes are updated at all participating nodes at the same time, typically leveraging a two-phase commit. While this approach replicates changes and
resolves conflicts before committing, a performance cost in latency occurs due to the coordination required across nodes.

Subscriber-only nodes

A PGD cluster is based around bidirectional replication. But in some use cases, such as needing a read-only server, bidirectional replication isn't needed. A
subscriber-only node is used in this case. It subscribes only to changes in the database to keep itself up to date and provide correct results to any run directly on the
node. This feature can be used to enable horizontal read scalability in a PGD cluster.

Two-phase commit (2PC)

A multi-step process for achieving consistency across multiple database nodes. The first phase sees a transaction prepared on an originating node and sent to all
participating nodes. Each participating node validates that it can apply the transaction and signals its readiness to the originating node. This is the prepare phase. In
the second phase, if all the participating nodes signal they're ready, the originating node proceeds to commit the transaction and signals the participating nodes to
commit, too. This is the commit phase. If, in the prepare phase, any node signals it isn't ready, the entire transaction is aborted. This process ensures all nodes get
the same changes.

Vertical scaling or scale up

A traditional computing approach of increasing a resource (CPU, memory, storage, network) to support a given workload until the physical limits of that
architecture are reached, for example, Oracle Exadata.

Witness nodes

Witness nodes primarily serve to help the cluster establish a consensus. An odd number of data nodes are needed to establish a consensus and, where resources are
limited, a witness node can be used to participate in cluster decisions but not replicate the data. Not holding the data means it can't operate as a standby server or
provide majorities in synchronous commits.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

Write leader

In an Always-On architecture, a node is selected as the correct connection endpoint for applications. This node is called the write leader. Once selected, proxy
nodes route queries and updates to it. With only one node receiving writes, unintended multi-node writes can be avoided. The write leader is selected by consensus
of a quorum of data nodes. If the write leader becomes unavailable, the data nodes select another node to become write leader. Nodes that aren't the write leader
are referred to as shadow nodes.

Writer

When a subscription delivers data changes to a PGD node, the database server tasks a worker process called a writer with getting those changes applied.

5 PGD overview

EDB Postgres Distributed (PGD) provides multi-master replication and data distribution with advanced conflict management, data-loss protection, and throughput
up to 5X faster than native logical replication. It also enables distributed Postgres clusters with high availability up to five 9s.

PGD provides loosely coupled, multimaster logical replication using a mesh topology. This means that you can write to any server and the changes are sent directly,
row-by-row, to all the other servers that are part of the same PGD group.

By default, PGD uses asynchronous replication, applying changes on the peer nodes only after the local commit. Multiple synchronous replication options are also
available.

Basic architecture

Multiple groups

A PGD node is a member of at least one node group. In the most basic architecture, there's a single node group for the whole PGD cluster.

Multiple masters

Each node (database) participating in a PGD group both receives changes from other members and can be written to directly by the user.

This is distinct from hot or warm standby, where only one master server accepts writes and all the other nodes are standbys that replicate either from the master or
from another standby.

You don't have to write to all the masters all of the time. A frequent configuration directs writes mostly to just one master called the write leader.

Asynchronous, by default

Changes made on one PGD node aren't replicated to other nodes until they're committed locally. As a result, the data isn't exactly the same on all nodes at any
given time. Some nodes have data that hasn't yet arrived at other nodes. PostgreSQL's block-based replication solutions default to asynchronous replication as well.
In PGD, there are multiple masters and, as a result, multiple data streams. So data on different nodes might differ even when synchronous_commit and
synchronous_standby_names are used.

Mesh topology

PGD is structured around a mesh network where every node connects to every other node, and all nodes exchange data directly with each other. There's no
forwarding of data in PGD except in special circumstances, such as adding and removing nodes. Data can arrive from outside the EDB Postgres Distributed cluster or

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

https://www.enterprisedb.com/blog/performance-improvements-edb-postgres-distributed

be sent onward using native PostgreSQL logical replication.

Logical replication

Logical replication is a method of replicating data rows and their changes based on their replication identity (usually a primary key). We use the term logical in
contrast to physical replication, which uses exact block addresses and byte-by-byte replication. Index changes aren't replicated, thereby avoiding write
amplification and reducing bandwidth.

Logical replication starts by copying a snapshot of the data from the source node. Once that's done, later commits are sent to other nodes as they occur in real time.
Changes are replicated without executing SQL again, so the exact data written is replicated quickly and accurately.

Nodes apply data in the order in which commits were made on the source node, ensuring transactional consistency is guaranteed for the changes from any single
node. Changes from different nodes are applied independently of other nodes to ensure the rapid replication of changes.

Replicated data is sent in binary form when it's safe to do so.

Connection management

Connection management leverages consensus-driven quorum to determine the correct connection endpoint in a semi-exclusive manner to prevent unintended
multi-node writes from an application. This approach reduces the potential for data conflicts. The node selected as the correct connection endpoint at any point in
time is referred to as the write leader.

PGD Proxy is the tool for application connection management provided as part of EDB Postgres Distributed.

High availability

Each master node can be protected by one or more standby nodes, so any node that goes down can be quickly replaced and continue. Each standby node is a logical
standby node. (Postgres physical standbys aren't supported by PGD.)

Replication continues between currently connected nodes even if one or more nodes are currently unavailable. When the node recovers, replication can restart from
where it left off without missing any changes.

Nodes can run different release levels, negotiating the required protocols to communicate. As a result, EDB Postgres Distributed clusters can use rolling upgrades,
even for major versions of database software.

DDL is replicated across nodes by default. DDL execution can be user controlled to allow rolling application upgrades, if desired.

Architectural options and performance

Always On architectures

A number of different architectures can be configured, each of which has different performance and scalability characteristics.

The group is the basic building block consisting of 2+ nodes (servers). In a group, each node is in a different availability zone, with dedicated router and backup,
giving immediate switchover and high availability. Each group has a dedicated replication set defined on it. If the group loses a node, you can easily repair or
replace it by copying an existing node from the group.

The Always On architectures are built from either one group in a single location or two groups in two separate locations. Each group provides high availability.
When two groups are leveraged in remote locations, they together also provide disaster recovery (DR).

Tables are created across both groups, so any change goes to all nodes, not just to nodes in the local group.

One node in each group is selected as the group's write leader. The write leader is the target for the main application's writes and queries. All other nodes are

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

described as shadow nodes (or "read-write replica"), waiting to take over when needed. If a node loses contact, processing switches immediately to a shadow node
to continue processing. If a group fails, processing can switch to the other group. Scalability isn't the goal of this architecture.

Since writes are mainly to only one node, the possibility of contention between nodes is reduced to almost zero. As a result, performance impact is much reduced.

Secondary applications might execute against the shadow nodes, although these are reduced or interrupted if the main application begins using that node.

In the future, one node will be elected as the main replicator to other groups, limiting CPU overhead of replication as the cluster grows and minimizing the
bandwidth to other groups.

Supported Postgres database servers

PGD is compatible with PostgreSQL, EDB Postgres Extended Server, and EDB Postgres Advanced Server and is deployed as a standard Postgres extension named
BDR. See Compatibility for details about supported version combinations.

Some key PGD features depend on certain core capabilities being available in the target Postgres database server. Therefore, PGD users must also adopt the
Postgres database server distribution that's best suited to their business needs. For example, if having the PGD feature Commit At Most Once (CAMO) is mission
critical to your use case, don't adopt the community PostgreSQL distribution. It doesn't have the core capability required to handle CAMO. See the full feature
matrix compatibility in Choosing a Postgres distribution.

PGD offers close-to-native Postgres compatibility. However, some access patterns don't necessarily work as well in multi-node setup as they do on a single
instance. There are also some limitations in what you can safely replicate in a multi-node setting. Application usage goes into detail about how PGD behaves from
an application development perspective.

Characteristics affecting performance

By default, PGD keeps one copy of each table on each node in the group, and any changes propagate to all nodes in the group.

Since copies of data are everywhere, SELECTs need only ever access the local node. On a read-only cluster, performance on any one node isn't affected by the
number of nodes and is immune to replication conflicts on other nodes caused by long-running SELECT queries. Thus, adding nodes increases linearly the total
possible SELECT throughput.

If an INSERT, UPDATE, and DELETE (DML) is performed locally, then the changes propagate to all nodes in the group. The overhead of DML apply is less than the
original execution. So if you run a pure write workload on multiple nodes concurrently, a multi-node cluster can handle more TPS than a single node.

Conflict handling has a cost that acts to reduce the throughput. The throughput then depends on how much contention the application displays in practice.
Applications with very low contention perform better than a single node. Applications with high contention can perform worse than a single node. These results are
consistent with any multimaster technology and aren't particular to PGD.

Synchronous replication options can send changes concurrently to multiple nodes so that the replication lag is minimized. Adding more nodes means using more
CPU for replication, so peak TPS reduces slightly as each node is added.

If the workload tries to use all CPU resources, then this resource constrains replication, which can then affect the replication lag.

In summary, adding more master nodes to a PGD group doesn't result in significant write throughput increase when most tables are replicated because all the
writes are replayed on all nodes. Because PGD writes are in general more effective than writes coming from Postgres clients by way of SQL, you can increase
performance. Read throughput generally scales linearly with the number of nodes.

6 Introducing PGD quick starts

Quick start

EDB Postgres Distributed (PGD) is a multi-master replicating implementation of Postgres designed for high performance and availability. You can create database
clusters made up of many bidirectionally synchronizing database nodes. The clusters can have a number of proxy servers that direct your query traffic to the most
available nodes, adding further resilience to your cluster configuration.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

https://www.postgresql.org/
https://techsupport.enterprisedb.com/customer_portal/sw/2ndqpostgres/
https://www.enterprisedb.com/docs/epas/latest
https://www.enterprisedb.com/docs/pgd/5/choosing_server/

Other deployment optionsOther deployment options

If you prefer to have a fully managed EDB Postgres Distributed experience, PGD is now available as an option on BigAnimal, EDB's cloud platform
for Postgres. Read more about BigAnimal distributed high-availability clusters.
If you prefer to deploy PGD on Kubernetes, you can use the EDB PGD Operator for Kubernetes. Read more about EDB PGD Operator for Kubernetes.

PGD is very configurable. To quickly evaluate and deploy PGD, use this quick start. It'll get you up and running with a fully configured PGD cluster using the same
tools that you'll use to deploy to production. This quick start includes:

A short introduction to Trusted Postgres Architect (TPA) and how it helps you configure, deploy, and manage EDB Postgres Distributed
A guide to selecting Docker, Linux hosts, or AWS quick starts

The Docker quick start
The Linux host quick start
The AWS quick start

Connecting applications to your cluster
Further explorations with your cluster including

Conflicts
Failover

Introducing PGD and TPA

PGD is a multi-master replicating implementation of Postgres designed for high performance and availability. The installation of PGD is orchestrated by TPA.

We created TPA to make installing and managing various Postgres configurations easily repeatable. TPA orchestrates creating and deploying Postgres.

These quick starts are designed to let you quickly get a single region cluster.

In these quick starts, you install TPA first. If you already have TPA installed, you can skip those steps. TPA is more of a tool than a simple installer. You can use the
same installation of TPA to deploy many different configurations of Postgres clusters.

You'll use TPA to generate a configuration file for a PGD demonstration cluster. This cluster will have three replicating database nodes, cohosting three high-
availability proxies and one backup node.

You will then use TPA to provision and deploy the required configuration and software to each node.

Selecting Docker, Linux hosts, or AWS quick starts

Three quick starts are currently available:

Docker — Provisions, deploys, and hosts the cluster on Docker containers on a single machine.
Linux hosts — Deploys and hosts the cluster on Linux servers that you have already provisioned with an operating system and SSH connectivity. These can be
actual physical servers or virtual machines, deployed on-premises or in the cloud.
AWS — Provisions, deploys, and hosts the cluster on AWS.

Docker quick start

The Docker quick start is ideal for those looking to initially explore PGD and its capabilities. This configuration of PGD isn't suitable for production use but can be
valuable for testing the functionality and behavior of PGD clusters. You might also find it useful when familiarizing yourself with PGD commands and APIs to
prepare for deploying on cloud, VM, or Linux hosts.

Begin the Docker quick start

Linux host quick start

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

https://www.enterprisedb.com/docs/biganimal/latest/overview/02_high_availability/distributed_highavailability/
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/quickstart

The Linux hosts quick start is suited for those looking to install PGD on their own hosts, where they have complete control of the hardware and software, or in a
private cloud. The overall configuration is similar to the Docker configuration but is more persistent over system restarts and closer to a single-region production
deployment of PGD.

Begin the Linux host quick start

AWS quick start

The AWS quick start is more extensive and deploys the PGD cluster onto EC2 nodes on Amazon's cloud. The cluster's overall configuration is similar to the Docker
quick start. However, instead of using Docker containers, it uses t3.micro instances of Amazon EC2 to provide the compute power. The AWS deployment is more
persistent and not subject to the limitations of the Docker quick start deployment. However, it requires more initial setup to configure the AWS CLI.

Begin the AWS quick start

Further explorations with your cluster

Connect applications to your PGD cluster
Find out how a PGD cluster stands up to downtime of data nodes or proxies
Learn about how EDB Postgres Distributed manages conflicting updates
Moving beyond the quick starts

6.1 Deploying an EDB Postgres Distributed example cluster on Docker

This quick start uses TPA to set up PGD with an Always On Single Location architecture using local Docker containers.

Introducing TPA and PGD

We created TPA to make installing and managing various Postgres configurations easily repeatable. TPA orchestrates creating and deploying Postgres. In this quick
start, you install TPA first. If you already have TPA installed, you can skip those steps. You can use TPA to deploy various configurations of Postgres clusters.

PGD is a multi-master replicating implementation of Postgres designed for high performance and availability. The installation of PGD is orchestrated by TPA. You
will use TPA to generate a configuration file for a PGD demonstration cluster.

This cluster uses local Docker containers to host the cluster's nodes: three replicating database nodes, three cohosted connection proxies, and one backup node.
You can then use TPA to provision and deploy the required configuration and software to each node.

This configuration of PGD isn't suitable for production use but can be valuable for testing the functionality and behavior of PGD clusters. You might also find it
useful when familiarizing yourself with PGD commands and APIs to prepare for deployment on cloud, VM, or Linux hosts.

NoteNote

This set of steps is specifically for Ubuntu 22.04 LTS on Intel/AMD processors.

Prerequisites

To complete this example, you need a system with enough RAM and free storage. You also need curl and Docker installed.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

RAM requirements

You need a minimum of 4GB of RAM on the system. You need this much RAM because you will be running four containers, three of which will be hosting Postgres
databases.

Free disk space

You need at least 5GB of free storage, accessible by Docker, to deploy the cluster described by this example. A bit more is probably wise.

The curl utility

You will download and run scripts during this quick start using the curl utilty which might not be installed by default. To ensure that curl is installed, run:

sudo apt update
sudo apt install curl

Docker Engine

You will use Docker containers as the target platform for this PGD deployment. Install Docker Engine:

sudo apt update
sudo apt install docker.io

Running as a non-root userRunning as a non-root user

Once Docker Engine is installed, be sure to add your user to the Docker group:

sudo usermod -aG docker <username>
newgrp docker

Preparation

EDB account

To install both TPA and PGD, you'll need an EDB account.

Sign up for a free EDB account if you don't already have one. Signing up gives you a trial subscription to EDB's software repositories.

After you are registered, go to the EDB Repos 2.0 page, where you can obtain your repo token.

On your first visit to this page, select Request AccessRequest Access to generate your repo token. Copy the token using the Copy TokenCopy Token icon, and store it safely.

Setting environment variables

First, set the EDB_SUBSCRIPTION_TOKEN environment variable to the value of your EDB repo token, obtained in the EDB account step.

export EDB_SUBSCRIPTION_TOKEN=<your-repo-token>

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

https://www.enterprisedb.com/accounts/register
https://www.enterprisedb.com/repos-downloads

You can add this to your .bashrc script or similar shell profile to ensure it's always set.

Configure the repository

All the software needed for this example is available from the EDB Postgres Distributed package repository. The following command downloads and runs a script to
configure the EDB Postgres Distributed repository. This repository also contains the TPA packages.

curl -1sLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.deb.sh" | sudo
-E bash

Troubleshooting repo accessTroubleshooting repo access

The script should produce output starting with:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...

If it produces no output or an error, double-check that you entered your token correctly. It the problem persists, contact Support for assistance.

Installing Trusted Postgres Architect (TPA)

You'll use TPA to provision and deploy PGD. If you previously installed TPA, you can move on to the next step. You'll find full instructions for installing TPA in the
Trusted Postgres Architect documentation, which we've also included here.

Linux environment

TPA supports several distributions of Linux as a host platform. These examples are written for Ubuntu 22.04, but steps are similar for other supported platforms.

ImportantImportant

If the Linux host platform you're using is running cgroups v2, you need to disable it and enable cgroups v1 while using TPA to deploy to Docker.

To check for cgroup v2, run:

mount | grep cgroup | head -1

If you do notnot see a line beginning:

tmpfs on /sys/fs/cgroup type tmpfs

Then you need to to disable cgroup v2. To do this, run:

echo 'GRUB_CMDLINE_LINUX=systemd.unified_cgroup_hierarchy=false' | sudo tee
/etc/default/grub.d/cgroup.cfg

Then update the grub bootloader and reboot by running:

sudo update-grub
sudo reboot

Install the TPA package

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

https://support.enterprisedb.com/
https://www.enterprisedb.com/docs/tpa/latest/INSTALL/
https://www.enterprisedb.com/docs/tpa/latest/INSTALL/
https://en.wikipedia.org/wiki/Cgroups

sudo apt install tpaexec

Configuring TPA

You now need to configure TPA, which configures TPA's Python environment. Call tpaexec with the command setup :

sudo /opt/EDB/TPA/bin/tpaexec setup
export PATH=$PATH:/opt/EDB/TPA/bin

You can add the export command to your shell's profile.

Testing the TPA installation

You can verify TPA is correctly installed by running selftest :

tpaexec selftest

TPA is now installed.

Installing PGD using TPA

Generating a configuration file

Run the tpaexec configure command to generate a configuration folder:

tpaexec configure democluster \
 --architecture PGD-Always-ON \
 --platform docker \
 --edb-postgres-advanced 16 \
 --redwood \
 --location-names dc1 \
 --pgd-proxy-routing local \
 --no-git \
 --hostnames-unsorted

You specify the PGD-Always-ON architecture (--architecture PGD-Always-ON), which sets up the configuration for PGD 5's Always On architectures. As
part of the default architecture, it configures your cluster with three data nodes, cohosting three PGD Proxy servers, along with a Barman node for backup.

Specify that you're using Docker (--platform docker). By default, TPA configures Rocky Linux as the default image for all nodes.

Deployment platformsDeployment platforms

Other Linux platforms are supported as deployment targets for PGD. See the EDB Postgres Distributed compatibility table for details.

Observe that you don't have to deploy PGD to the same platform you're using to run TPA!

Specify that the data nodes will be running EDB Postgres Advanced Server v16 (--edb-postgres-advanced 16) with Oracle compatibility (--redwood).

You set the notional location of the nodes to dc1 using --location-names . You then set --pgd-proxy-routing to local so that proxy routing can
route traffic to all nodes within each location.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

https://www.enterprisedb.com/docs/tpa/latest/tpaexec-configure/
https://www.enterprisedb.com/docs/pgd/5/architectures/
https://www.enterprisedb.com/resources/platform-compatibility
https://www.enterprisedb.com/docs/epas/latest/

By default, TPA commits configuration changes to a Git repository. For this example, you don't need to do that, so pass the --no-git flag.

Finally, you ask TPA to generate repeatable hostnames for the nodes by passing --hostnames-unsorted . Otherwise, it selects hostnames at random from a
predefined list of suitable words.

This command creates a subdirectory in the current working directory called democluster . It contains the config.yml configuration file TPA uses to create
the cluster. You can view it using:

less democluster/config.yml

Further readingFurther reading

View the full set of available options by running:

tpaexec configure --architecture PGD-Always-ON --help

More details on PGD-Always-ON configuration options in Deploying with TPA
PGD-Always-ON in the Trusted Postgres Architect documentation
tpaexec configure in the Trusted Postgres Architect documentation

Docker platform in the Trusted Postgres Architect documentation

Provisioning the cluster

Next, allocate the resources needed to run the configuration you just created using the tpaexec provision command:

tpaexec provision democluster

Since you specified Docker as the platform, TPA creates a Docker image, containers, networks, and so on.

Further readingFurther reading

tpaexec provision in the Trusted Postgres Architect documentation

Deploying the cluster

With configuration in place and infrastructure provisioned, you can now deploy the distributed cluster:

tpaexec deploy democluster

TPA applies the configuration, installing the needed packages and setting up the actual EDB Postgres Distributed cluster.

Further readingFurther reading

tpaexec deploy in the Trusted Postgres Architect documentation

Connecting to the cluster

You're now ready to log into one of the nodes of the cluster with SSH and then connect to the database. Part of the configuration process set up SSH logins for all
the nodes, complete with keys. To use the SSH configuration, you need to be in the democluster directory created by the tpaexec configure command
earlier:

cd democluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

https://www.enterprisedb.com/docs/pgd/5/admin-tpa/installing.mdx
https://www.enterprisedb.com/docs/tpa/latest/architecture-PGD-Always-ON/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-configure/
https://www.enterprisedb.com/docs/tpa/latest/platform-docker/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-provision/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-provision/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-deploy/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-deploy/

From there, you can run ssh -F ssh_config <hostname> to establish an SSH connection. You will connect to kaboom, the first database node in the
cluster:

ssh -F ssh_config kaboom

[root@kaboom ~]#

Notice that you're logged in as root on kaboom .

You now need to adopt the identity of the enterprisedb user. This user is preconfigured and authorized to connect to the cluster's nodes.

sudo -iu enterprisedb

enterprisedb@kaboom:~ $

You can now run the psql command to access the bdrdb database:

psql bdrdb

psql (16.2.0, server 16.2.0)
Type "help" for help.

bdrdb=#

You're directly connected to the Postgres database running on the kaboom node and can start issuing SQL commands.

To leave the SQL client, enter exit .

Using PGD CLI

The pgd utility, also known as the PGD CLI, lets you control and manage your EDB Postgres Distributed cluster. It's already installed on the node.

You can use it to check the cluster's health by running pgd check-health :

pgd check-health

Check Status Message
----- ------ -------
ClockSkew Ok All BDR node pairs have clockskew within permissible limit
Connection Ok All BDR nodes are accessible
Raft Ok Raft Consensus is working correctly
Replslots Ok All BDR replication slots are working correctly
Version Ok All nodes are running same BDR versions
enterprisedb@kaboom:~ $

Or, you can use pgd show-nodes to ask PGD to show you the data-bearing nodes in the cluster:

pgd show-nodes

Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
kaboom 2710197610 dc1_subgroup data ACTIVE ACTIVE Up 1
kaftan 3490219809 dc1_subgroup data ACTIVE ACTIVE Up 3
kaolin 2111777360 dc1_subgroup data ACTIVE ACTIVE Up 2

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

enterprisedb@kaboom:~ $

Similarly, use pgd show-proxies to display the proxy connection nodes:

pgd show-proxies

Proxy Group Listen Addresses Listen Port
----- ----- ---------------- -----------
kaboom dc1_subgroup [0.0.0.0] 6432
kaftan dc1_subgroup [0.0.0.0] 6432
kaolin dc1_subgroup [0.0.0.0] 6432

The proxies provide high-availability connections to the cluster of data nodes for applications. You can connect to the proxies and, in turn, to the database with the
command psql -h kaboom,kaftan,kaolin -p 6432 bdrdb :

psql -h kaboom,kaftan,kaolin -p 6432 bdrdb

psql (16.2.0, server 16.2.0)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)
Type "help" for help.

bdrdb=#

Explore your cluster

Connect to your database to applications
Explore failover with hands-on exercises
Understand conflicts by creating and monitoring them
Next steps in working with your cluster

6.2 Deploying an EDB Postgres Distributed example cluster on Linux hosts

Introducing TPA and PGD

We created TPA to make installing and managing various Postgres configurations easily repeatable. TPA orchestrates creating and deploying Postgres. In this quick
start, you install TPA first. If you already have TPA installed, you can skip those steps. You can use TPA to deploy various configurations of Postgres clusters.

PGD is a multi-master replicating implementation of Postgres designed for high performance and availability. The installation of PGD is orchestrated by TPA. You
will use TPA to generate a configuration file for a PGD demonstration cluster.

The TPA Linux host option allows users of any cloud or VM platform to use TPA to configure EDB Postgres Distributed. All you need from TPA is for the target system
to be configured with a Linux operating system and accessible using SSH. Unlike the other TPA platforms (Docker and AWS), the Linux host configuration doesn't
provision the target machines. It's up to you to provision them wherever you decide to deploy.

This cluster uses Linux server instances to host the cluster's nodes. The nodes include three replicating database nodes, three cohosted connection proxies, and one
backup node. TPA can then provision, prepare, and deploy the required EDB Postgres Distributed software and configuration to each node.

On host compatibilityOn host compatibility

This set of steps is specifically for users running Ubuntu 22.04 LTS on Intel/AMD processors.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

Prerequisites

Configure your Linux hosts

You will need to provision four hosts for this quick start. Each host should have a supported Linux operating system installed. To eliminate prompts for password,
each host also needs to be SSH-accessible using certificate key pairs.

On machine provisioningOn machine provisioning

Azure users can follow a Microsoft guide on how to provision Azure VMs loaded with Linux. Google Cloud Platform users can follow a Google guide on
how to provision GCP VMs with Linux loaded. You can use any virtual machine technology to host a Linux instance, too. Refer to your virtualization
platform's documentation for instructions on how to create instances with Linux loaded on them.

Whichever cloud or VM platform you use, you need to make sure that each instance is accessible by SSH and that each instance can connect to the other
instances. They can connect through either the public network or over a VPC for the cloud platforms. You can connect through your local network for on-
premises VMs.

If you can't do this, you might want to consider the Docker or AWS quick start. These configurations are easier to set up and quicker to tear down. The
AWS quick start, for example, automatically provisions compute instances and creates a VPC for those instances.

In this quick start, you will install PGD nodes onto four hosts configured in the cloud. Each of these hosts in this example is installed with Rocky Linux. Each has a
public IP address to go with its private IP address.

Host name Public IP Private IP

linuxhost-1 172.19.16.27 192.168.2.247

linuxhost-2 172.19.16.26 192.168.2.41

linuxhost-3 172.19.16.25 192.168.2.254

linuxhost-4 172.19.16.15 192.168.2.30

These are example IP addresses. Substitute them with your own public and private IP addresses as you progress through the quick start.

Set up a host admin user

Each machine requires a user account to use for installation. For simplicity, use a user with the same name on all the hosts. On each host, also configure the user so
that you can SSH into the host without being prompted for a password. Be sure to give that user sudo privileges on the host. On the four hosts, the user rocky is
already configured with sudo privileges.

Preparation

EDB account

You'll need an EDB account to install both TPA and PGD.

Sign up for a free EDB account if you don't already have one. Signing up gives you a trial subscription to EDB's software repositories.

After you are registered, go to the EDB Repos 2.0 page, where you can obtain your repo token.

On your first visit to this page, select Request AccessRequest Access to generate your repo token. Copy the token using the Copy TokenCopy Token icon, and store it safely.

Setting environment variables

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

https://www.enterprisedb.com/docs/tpa/latest/reference/distributions/
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://cloud.google.com/compute/docs/create-linux-vm-instance
https://www.enterprisedb.com/accounts/register
https://www.enterprisedb.com/repos-downloads

First, set the EDB_SUBSCRIPTION_TOKEN environment variable to the value of your EDB repo token, obtained in the EDB account step.

export EDB_SUBSCRIPTION_TOKEN=<your-repo-token>

You can add this to your .bashrc script or similar shell profile to ensure it's always set.

Configure the repository

All the software needed for this example is available from the EDB Postgres Distributed package repository. Download and run a script to configure the EDB
Postgres Distributed repository. This repository also contains the TPA packages.

curl -1sLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.deb.sh" | sudo
-E bash

Installing Trusted Postgres Architect (TPA)

You'll use TPA to provision and deploy PGD. If you previously installed TPA, you can move on to the next step. You'll find full instructions for installing TPA in the
Trusted Postgres Architect documentation, which we've also included here.

Linux environment

TPA supports several distributions of Linux as a host platform. These examples are written for Ubuntu 22.04, but steps are similar for other supported platforms.

Install the TPA package

sudo apt install tpaexec

Configuring TPA

You now need to configure TPA, which configures TPA's Python environment. Call tpaexec with the command setup :

sudo /opt/EDB/TPA/bin/tpaexec setup
export PATH=$PATH:/opt/EDB/TPA/bin

You can add the export command to your shell's profile.

Testing the TPA installation

You can verify TPA is correctly installed by running selftest :

tpaexec selftest

TPA is now installed.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

https://www.enterprisedb.com/docs/tpa/latest/INSTALL/
https://www.enterprisedb.com/docs/tpa/latest/INSTALL/

Installing PGD using TPA

Generating a configuration file

Run the tpaexec configure command to generate a configuration folder:

tpaexec configure democluster \
 --architecture PGD-Always-ON \
 --platform bare \
 --edb-postgres-advanced 16 \
 --redwood \
 --no-git \
 --location-names dc1 \
 --pgd-proxy-routing local \
 --hostnames-unsorted

You specify the PGD-Always-ON architecture (--architecture PGD-Always-ON), which sets up the configuration for PGD 5's Always On architectures. As
part of the default architecture, it configures your cluster with three data nodes, cohosting three PGD Proxy servers and a Barman node for backup.

For Linux hosts, specify that you're targeting a "bare" platform (--platform bare). TPA will determine the Linux version running on each host during
deployment. See the EDB Postgres Distributed compatibility table for details about the supported operating systems.

Specify that the data nodes will be running EDB Postgres Advanced Server v16 (--edb-postgres-advanced 16) with Oracle compatibility (--redwood).

You set the notional location of the nodes to dc1 using --location-names . You then set --pgd-proxy-routing to local so that proxy routing can
route traffic to all nodes within each location.

By default, TPA commits configuration changes to a Git repository. For this example, you don't need to do that, so pass the --no-git flag.

Finally, you ask TPA to generate repeatable hostnames for the nodes by passing --hostnames-unsorted . Otherwise, it selects hostnames at random from a
predefined list of suitable words.

This command creates a subdirectory in the current working directory called democluster . It contains the config.yml configuration file TPA uses to create
the cluster. You can view it using:

less democluster/config.yml

You now need to edit the configuration file to add details related to your Linux hosts, such as admin user names and public and private IP addresses.

Editing your configuration

Using your preferred editor, open democluster/config.yml .

Search for the line containing ansible_user: root . Change root to the name of the user you configured with SSH access and sudo privileges. Follow that
with this line:

Your instance_defaults section now looks like this:

 manage_ssh_hostkeys:: yes

instance_defaults::
 platform:: bare
 vars::
 ansible_user:: rocky
 manage_ssh_hostkeys:: yes

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

https://www.enterprisedb.com/docs/tpa/latest/tpaexec-configure/
https://www.enterprisedb.com/docs/pgd/latest/architectures/
https://www.enterprisedb.com/resources/platform-compatibility
https://www.enterprisedb.com/docs/epas/latest/

Next, search for node: 1 , which is the configuration settings of the first node, kaboom.

After the node: 1 line, add the public and private IP addresses of your node. Use linuxhost-1 as the host for this node. Add the following to the file,
substituting your IP addresses. Align the start of each line with the start of the node: line.

The whole entry for kaboom looks like this but with your own IP addresses:

Repeat this process for the three other nodes.

Search for node: 2 , which is the configuration settings for the node kaftan. Use linuxhost-2 for this node. Substituting your IP addresses, add:

Search for node: 3 , which is the configuration settings for the node kaolin. Use linuxhost-3 for this node. Substituting your IP addresses, add:

Finally, search for node: 4 , which is the configuration settings for the node kapok. Use linuxhost-4 for this node. Substituting your IP addresses, add:

Provisioning the cluster

You can now run:

tpaexec provision democluster

This command prepares for deploying the cluster. (On other platforms, such as Docker and AWS, this command also creates the required hosts. When using Linux
hosts, your hosts should already be configured.)

Further readingFurther reading

tpaexec provision in the Trusted Postgres Architect documentation

One part of this process for Linux hosts is creating key-pairs for the hosts for SSH operations later. With those key-pairs created, you will need to copy the public

 public_ip:: 172.19.16.27
 private_ip:: 192.168.2.247

-- Name::
kaboom
 backup:: kapok
 location::
dc1
 node:: 1
 public_ip:: 172.19.16.27
 private_ip:: 192.168.2.247
 role::
 --
bdr
 -- pgd-proxy
 vars::
 bdr_child_group:: dc1_subgroup
 bdr_node_options::
 route_priority:: 100

 public_ip:: 172.19.16.26
 private_ip:: 192.168.2.41

 public_ip:: 172.19.16.25
 private_ip:: 192.168.2.254

 public_ip:: 172.19.16.15
 private_ip:: 192.168.2.30

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

https://www.enterprisedb.com/docs/tpa/latest/tpaexec-provision/

part of the key-pair to the hosts. You can do this with ssh-copy-id , giving the democluster identity (-i) and the login to each host. For this example, these are
the commands:

ssh-copy-id -i democluster/id_democluster rocky@172.19.16.27
ssh-copy-id -i democluster/id_democluster rocky@172.19.16.26
ssh-copy-id -i democluster/id_democluster rocky@172.19.16.25
ssh-copy-id -i democluster/id_democluster rocky@172.19.16.15

You can now create the tpa_known_hosts file, which allows the hosts to be verified. Use ssh-keyscan on each host (-H) and append its output to
tpa_known_hosts :

ssh-keyscan -H 172.19.16.27 >> democluster/tpa_known_hosts
ssh-keyscan -H 172.19.16.26 >> democluster/tpa_known_hosts
ssh-keyscan -H 172.19.16.25 >> democluster/tpa_known_hosts
ssh-keyscan -H 172.19.16.15 >> democluster/tpa_known_hosts

Deploy your cluster

You now have everything ready to deploy your cluster. To deploy, run:

tpaexec deploy democluster

TPA applies the configuration, installing the needed packages and setting up the actual EDB Postgres Distributed cluster.

Further readingFurther reading

tpaexec deploy in the Trusted Postgres Architect documentation

Connecting to the cluster

You're now ready to log into one of the nodes of the cluster with SSH and then connect to the database. Part of the configuration process set up SSH logins for all
the nodes, complete with keys. To use the SSH configuration, you need to be in the democluster directory created by the tpaexec configure command
earlier:

cd democluster

From there, you can run ssh -F ssh_config <hostname> to establish an SSH connection. Connect to kaboom, the first database node in the cluster:

ssh -F ssh_config kaboom

[rocky@kaboom ~]#

Notice that you're logged in as rocky, the admin user and ansible user you configured earlier, on kaboom.

You now need to adopt the identity of the enterprisedb user. This user is preconfigured and authorized to connect to the cluster's nodes.

sudo -iu enterprisedb

enterprisedb@kaboom:~ $

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

https://www.enterprisedb.com/docs/tpa/latest/tpaexec-deploy/

You can now run the psql command to access the bdrdb database:

psql bdrdb

psql (16.2.0, server 16.2.0)
Type "help" for help.

bdrdb=#

You're directly connected to the Postgres database running on the kaboom node and can start issuing SQL commands.

To leave the SQL client, enter exit .

Using PGD CLI

The pgd utility, also known as the PGD CLI, lets you control and manage your EDB Postgres Distributed cluster. It's already installed on the node.

You can use it to check the cluster's health by running pgd check-health :

pgd check-health

Check Status Message
----- ------ -------
ClockSkew Ok All BDR node pairs have clockskew within permissible limit
Connection Ok All BDR nodes are accessible
Raft Ok Raft Consensus is working correctly
Replslots Ok All BDR replication slots are working correctly
Version Ok All nodes are running same BDR versions
enterprisedb@kaboom:~ $

Or, you can use pgd show-nodes to ask PGD to show you the data-bearing nodes in the cluster:

pgd show-nodes

Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
kaboom 2710197610 dc1_subgroup data ACTIVE ACTIVE Up 1
kaftan 3490219809 dc1_subgroup data ACTIVE ACTIVE Up 3
kaolin 2111777360 dc1_subgroup data ACTIVE ACTIVE Up 2
enterprisedb@kaboom:~ $

Similarly, use pgd show-proxies to display the proxy connection nodes:

pgd show-proxies

Proxy Group Listen Addresses Listen Port
----- ----- ---------------- -----------
kaboom dc1_subgroup [0.0.0.0] 6432
kaftan dc1_subgroup [0.0.0.0] 6432
kaolin dc1_subgroup [0.0.0.0] 6432

The proxies provide high-availability connections to the cluster of data nodes for applications. You can connect to the proxies and, in turn, to the database with the
command psql -h kaboom,kaftan,kaolin -p 6432 bdrdb :

psql -h kaboom,kaftan,kaolin -p 6432 bdrdb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

psql (16.2.0, server 16.2.0)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)
Type "help" for help.

bdrdb=#

Explore your cluster

Connect to your database to applications
Explore failover with hands-on exercises
Understand conflicts by creating and monitoring them
Next steps in working with your cluster

6.3 Deploying an EDB Postgres Distributed example cluster on AWS

This quick start sets up EDB Postgres Distributed with an Always On Single Location architecture using Amazon EC2.

Introducing TPA and PGD

We created TPA to make installing and managing various Postgres configurations easily repeatable. TPA orchestrates creating and deploying Postgres. In this quick
start, you install TPA first. If you already have TPA installed, you can skip those steps. You can use TPA to deploy various configurations of Postgres clusters.

PGD is a multi-master replicating implementation of Postgres designed for high performance and availability. The installation of PGD is orchestrated by TPA. You
will use TPA to generate a configuration file for a PGD demonstration cluster. This cluster uses Amazon EC2 instances configures your cluster with three data
nodes, cohosting three PGD Proxy servers, along with a Barman node for backup. You can then use TPA to provision and deploy the required configuration and
software to each node.

Preparation

NoteNote

This set of steps is specifically for Ubuntu 22.04 LTS on Intel/AMD processors.

EDB account

To install both TPA and PGD, you need an EDB account.

Sign up for a free EDB account if you don't already have one. Signing up gives you a trial subscription to EDB's software repositories.

After you are registered, go to the EDB Repos 2.0 page, where you can obtain your repo token.

On your first visit to this page, select Request AccessRequest Access to generate your repo token. Copy the token using the Copy TokenCopy Token icon, and store it safely.

Install curl

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

https://www.enterprisedb.com/accounts/register
https://www.enterprisedb.com/repos-downloads

You use the curl command to retrieve installation scripts from repositories. On Ubuntu, curl isn't installed by default. To see if it's present, run curl in the
terminal:

$ curl
Command 'curl' not found, but can be installed with:
sudo apt install curl

If not found, run:

sudo apt -y install curl

Setting environment variables

First, set the EDB_SUBSCRIPTION_TOKEN environment variable to the value of your EDB repo token, obtained in the EDB account step.

export EDB_SUBSCRIPTION_TOKEN=<your-repo-token>

You can add this to your .bashrc script or similar shell profile to ensure it's always set.

Configure the repository

All the software needed for this example is available from the EDB Postgres Distributed package repository. The following command downloads and runs a script to
configure the EDB Postgres Distributed repository. This repository also contains the TPA packages.

curl -1sLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.deb.sh" | sudo
-E bash

Troubleshooting repo accessTroubleshooting repo access

The script should produce output starting with:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...

If it produces no output or an error, double-check that you entered your token correctly. If the problem persists, contact Support for assistance.

Installing Trusted Postgres Architect (TPA)

You'll use TPA to provision and deploy PGD. If you previously installed TPA, you can move on to the next step. You'll find full instructions for installing TPA in the
Trusted Postgres Architect documentation, which we've also included here.

Linux environment

TPA supports several distributions of Linux as a host platform. These examples are written for Ubuntu 22.04, but steps are similar for other supported platforms.

Install the TPA package

sudo apt install tpaexec

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

https://support.enterprisedb.com/
https://www.enterprisedb.com/docs/tpa/latest/INSTALL/
https://www.enterprisedb.com/docs/tpa/latest/INSTALL/

Configuring TPA

You need to configure TPA, which configures TPA's Python environment. Call tpaexec with the command setup :

sudo /opt/EDB/TPA/bin/tpaexec setup
export PATH=$PATH:/opt/EDB/TPA/bin

You can add the export command to your shell's profile.

Testing the TPA installation

You can verify TPA is correctly installed by running selftest :

tpaexec selftest

TPA is now installed.

AWS Credentials

TPA uses your AWS credentials to perform the deployment onto AWS. Unless you have a corporate-managed account, you will need to get your credentials from
AWS. Corporate-managed accounts will have their own process for obtaining credentials.

Your credentials will consist of an AWS Access Key ID and a Secret Access Key. You will also need to select an AWS default region for your work.

Set the environment variables AWS_ACCESS_KEY_ID , AWS_SECRET_ACCESS_KEY , and AWS_DEFAULT_REGION to the values of your AWS credentials.
You can add these to your .bashrc or similar shell profile to ensure they're always set.

$ export AWS_ACCESS_KEY_ID=THISISJUSTANEXAMPLE
$ export AWS_SECRET_ACCESS_KEY=d0ntU5E/Th1SAs1ts/jUs7anEXAMPLEKEY
$ export AWS_DEFAULT_REGION=us-west-2

Your account will need the necessary permissions to create and manage the resources that TPA uses. The TPA AWS platform page details the permissions that you'll
need. Consult your AWS administrator if you need help with this.

Installing PGD using TPA

Generating a configuration file

Run the tpaexec configure command to generate a configuration folder:

tpaexec configure democluster \
 --architecture PGD-Always-ON \
 --platform aws \
 --region eu-west-1 \
 --edb-postgres-advanced 16 \
 --redwood \
 --location-names dc1 \
 --pgd-proxy-routing local \
 --no-git \
 --hostnames-unsorted

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 39

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html
https://www.enterprisedb.com/docs/tpa/latest/platform-aws/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-configure/

You specify the PGD-Always-ON architecture (--architecture PGD-Always-ON), which sets up the configuration for PGD 5's Always On architectures. As
part of the default architecture, this configures your cluster with three data nodes, cohosting three PGD Proxy servers, along with a Barman node for backup.

Specify that you're using AWS (--platform aws) and eu-west-1 as the region (--region eu-west-1).

TPA defaults to t3.micro instances on AWS. This is enough for this demonstration and also suitable for use with an AWS free tier account.

AWS free tier limitationsAWS free tier limitations

AWS free tier limitations for EC2 are based on hours of instance usage. Depending on how much time you spend testing, you might exceed these limits
and incur charges.

By default, TPA configures Debian as the default OS for all nodes on AWS.

Deployment platformsDeployment platforms

Other Linux platforms are supported as deployment targets for PGD. See the EDB Postgres Distributed compatibility table for details.

Observe that you don't have to deploy PGD to the same platform you're using to run TPA!

Specify that the data nodes will be running EDB Postgres Advanced Server v16 (--edb-postgres-advanced 16) with Oracle compatibility (--redwood).

You set the notional location of the nodes to dc1 using --location-names . You then set --pgd-proxy-routing to local so that proxy routing can
route traffic to all nodes within each location.

By default, TPA commits configuration changes to a Git repository. For this example, you don't need to do that, so you pass the --no-git flag.

Finally, you ask TPA to generate repeatable hostnames for the nodes by passing --hostnames-unsorted . Otherwise, it selects hostnames at random from a
predefined list of suitable words.

This command creates a subdirectory in the current working directory called democluster . It contains the config.yml configuration file TPA uses to create
the cluster. You can view it using:

less democluster/config.yml

Further readingFurther reading

View the full set of available options by running:

tpaexec configure --architecture PGD-Always-ON --help

More details on PGD-Always-ON configuration options in Deploying with TPA
PGD-Always-ON in the Trusted Postgres Architect documentation
tpaexec configure in the Trusted Postgres Architect documentation

AWS platform in the Trusted Postgres Architect documentation

Provisioning the cluster:

Next, allocate the resources needed to run the configuration you just created using the tpaexec provision command:

tpaexec provision democluster

Since you specified AWS as the platform (the default platform), TPA provisions EC2 instances, VPCs, subnets, routing tables, internet gateways, security groups,
EBS volumes, elastic IPs, and so on.

Because you didn't specify an existing one when configuring, TPA also prompts you to confirm the creation of an S3 bucket.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 40

https://www.enterprisedb.com/docs/pgd/latest/architectures/
https://aws.amazon.com/free/
https://www.enterprisedb.com/resources/platform-compatibility
https://www.enterprisedb.com/docs/epas/latest/
https://www.enterprisedb.com/docs/pgd/5/admin-tpa/installing.mdx
https://www.enterprisedb.com/docs/tpa/latest/architecture-PGD-Always-ON/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-configure/
https://www.enterprisedb.com/docs/tpa/latest/platform-aws/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-provision/

Remember to remove the bucket when you're done testing!Remember to remove the bucket when you're done testing!

TPA doesn't remove the bucket that it creates in this step when you later deprovision the cluster. Take note of the name now, so that you can be sure to
remove it later.

Further readingFurther reading

tpaexec provision in the Trusted Postgres Architect documentation

Deploying the cluster

With configuration in place and infrastructure provisioned, you can now deploy the distributed cluster:

tpaexec deploy democluster

TPA applies the configuration, installing the needed packages and setting up the actual EDB Postgres Distributed cluster.

Further readingFurther reading

tpaexec deploy in the Trusted Postgres Architect documentation

Connecting to the cluster

You're now ready to log into one of the nodes of the cluster with SSH and then connect to the database. Part of the configuration process set up SSH logins for all
the nodes, complete with keys. To use the SSH configuration, you need to be in the democluster directory created by the tpaexec configure command
earlier:

cd democluster

From there, you can run ssh -F ssh_config <hostname> to establish an SSH connection. You will connect to kaboom, the first database node in the
cluster:

ssh -F ssh_config kaboom

[admin@kaboom ~]#

Notice that you're logged in as admin on kaboom.

You now need to adopt the identity of the enterprisedb user. This user is preconfigured and authorized to connect to the cluster's nodes.

sudo -iu enterprisedb

enterprisedb@kaboom:~ $

You can now run the psql command to access the bdrdb database:

psql bdrdb

psql (16.2.0, server 16.2.0)
Type "help" for help.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 41

https://www.enterprisedb.com/docs/tpa/latest/tpaexec-provision/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-deploy/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-deploy/

bdrdb=#

You're directly connected to the Postgres database running on the kaboom node and can start issuing SQL commands.

To leave the SQL client, enter exit .

Using PGD CLI

The pgd utility, also known as the PGD CLI, lets you control and manage your EDB Postgres Distributed cluster. It's already installed on the node.

You can use it to check the cluster's health by running pgd check-health :

pgd check-health

Check Status Message
----- ------ -------
ClockSkew Ok All BDR node pairs have clockskew within permissible limit
Connection Ok All BDR nodes are accessible
Raft Ok Raft Consensus is working correctly
Replslots Ok All BDR replication slots are working correctly
Version Ok All nodes are running same BDR versions
enterprisedb@kaboom:~ $

Or, you can use pgd show-nodes to ask PGD to show you the data-bearing nodes in the cluster:

pgd show-nodes

Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
kaboom 2710197610 dc1_subgroup data ACTIVE ACTIVE Up 1
kaftan 3490219809 dc1_subgroup data ACTIVE ACTIVE Up 3
kaolin 2111777360 dc1_subgroup data ACTIVE ACTIVE Up 2
enterprisedb@kaboom:~ $

Similarly, use pgd show-proxies to display the proxy connection nodes:

pgd show-proxies

Proxy Group Listen Addresses Listen Port
----- ----- ---------------- -----------
kaboom dc1_subgroup [0.0.0.0] 6432
kaftan dc1_subgroup [0.0.0.0] 6432
kaolin dc1_subgroup [0.0.0.0] 6432

The proxies provide high-availability connections to the cluster of data nodes for applications. You can connect to the proxies and, in turn, to the database with the
command psql -h kaboom,kaftan,kaolin -p 6432 bdrdb :

psql -h kaboom,kaftan,kaolin -p 6432 bdrdb

psql (16.2.0, server 16.2.0)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)
Type "help" for help.

bdrdb=#

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 42

Explore your cluster

Connect your database to applications
Explore failover with hands-on exercises
Understand conflicts by creating and monitoring them
Next steps in working with your cluster

6.4 Deploying an EDB Postgres Distributed example cluster on Azure and Google cloud platforms

Deploying on Azure and Google clouds

For most cloud platforms such as Azure and Google Cloud Platform, you create Linux hosts on the cloud platform you are using. You can then use the Deploying on
Linux hosts quick start to deploy PGD to those Linux hosts.

Azure users can follow a Microsoft guide on how to provision Azure VMs loaded with Linux.
Google Cloud Platform users can follow a Google guide on how to provision GCP VMs with Linux loaded.

Now continue with Deploying on Linux hosts

AWS users should go to the Deploying on AWS quick start where TPA will automatically provision the hosts needed to create your cluster.

6.5 Connecting to your database

Connecting your application or remotely connecting to your new EDB Postgres Distributed cluster involves:

Getting credentials and optionally creating a .pgpass file
Establishing the IP address of any PGD Proxy hosts you want to connect to
Ensuring that you can connect to that IP address
Getting an appropriate Postgres client
Connecting the client to the cluster

Getting credentials

The default user, enterprisedb, was created in the cluster by tpaexec. It also generated passwords for that user as part of the provisioning. To get the password, run:

tpaexec show-password democluster enterprisedb

This command returns a string that's the password for the enterprisedb user. If you want, you can use that string when prompted for a password.

Creating a .pgpass file

You can avoid entering passwords for psql and other Postgres clients by creating a .pgpass file in your home directory. It contains password details that
applications can look up when connecting. After getting the password (see Getting credentials), you can open the .pgpass file using your preferred editor.

In the file, enter:

::bdrdb:enterprisedb:<your password>

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 43

https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://cloud.google.com/compute/docs/create-linux-vm-instance
https://www.postgresql.org/docs/current/libpq-pgpass.html

Save the file and exit the editor. To secure the file, run the following command. This command gives read and write access only to you.

chmod 0600 ~/.pgpass

Establishing the IP address

Docker

Your Docker quick start cluster is by default accessible on the IP addresses 172.17.0.2 (kaboom), 172.17.0.3 (kaftan), 172.17.04 (kaolin), and 172.17.0.5 (kapok).
Docker generates these addresses.

AWS

You can refer to the IP addresses in democluster/ssh_config . Alternatively, run:

aws ec2 --region eu-west-1 describe-instances --query 'Reservations[*].Instances[*].
{PublicIpAddress:PublicIpAddress,Name:Tags[?Key==`Name`]|[0].Value}'

[
 [
 {
 "PublicIpAddress": "54.217.130.13",
 "Name": "kapok"
 }
],
 [
 {
 "PublicIpAddress": "54.170.119.101",
 "Name": "kaolin"
 }
],
 [
 {
 "PublicIpAddress": "3.250.235.130",
 "Name": "kaftan"
 }
],
 [
 {
 "PublicIpAddress": "34.247.188.211",
 "Name": "kaboom"
 }
]
]

This command shows you EC2's list of public IP addresses for the cluster instances.

Linux hosts

You set IP addresses for your Linux servers when you configured the cluster in the quick start. Use those addresses.

Ensure you can connect to your IP addresses

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 44

Linux hosts and Docker

You don't need to perform any configuration to connect these.

AWS

AWS is configured to allow outside access only to its SSH endpoints. To allow Postgres clients to connect from outside the AWS cloud, you need to enable the
transit of traffic on port 6432.

Get your own external IP address or the external IP address of the system you want to connect to the cluster. One way to do this is to run:

curl https://checkip.amazonaws.com

89.97.100.108

You also need the security groupid for your cluster. Run:

aws ec2 --region eu-west-1 describe-security-groups --filter Name=group-name,Values="*democluster*" | grep
GroupId

 "GroupId": "sg-072f996360ba20d5c",

Enter the correct region for your cluster, which you set when you configured it.

aws ec2 authorize-security-group-ingress --group-id <SECURITYGROUPID> --protocol tcp --port 6432 --cidr
<YOURIP>/32 --region eu-west-1

Again, make sure you put in the correct region for your cluster.

You can read more about this command in Add rules to your security group in the AWS CLI guide.

Getting an appropriate Postgres client

Unless you installed Postgres on your local system, you probably need to install a client application, such as psql , to connect to your database cluster.

On Ubuntu, for example, you can run:

sudo apt install postgresql-client

This command installs psql , along with some other tools but without installing the Postgres database locally.

Connecting the client to the cluster

After you install psql or a similar client, you can connect to the cluster. Run:

psql -h <ipaddressofnode> -p 6432 -U enterprisedb bdrdb

psql (16.2, server 16.2.0)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 45

https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2-sg.html#configuring-a-security-group

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

bdrdb=#

Use the .pgpass file with clients that support it, or use the host, port, user, password, and database name to connect with other applications.

Using proxy failover to connect the client to the cluster

By listing all the addresses of proxies as the host, you can ensure that the client will always failover and connect to the first available proxy in the event of a proxy
failing.

psql -h <ipaddressofnode1>,<ipaddressofnode2>,<ipaddressofnode3> -U enterprisedb -p 6432 bdrdb

psql (16.2, server 16.2.0)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

bdrdb=#

Creating a Connection URL

Many applications use a Connection URL to connect to the database. To create a Connection URL, you need to assemble a string in the format:

postgresql://<user>@<ipaddressofnode1>:6432,<ipaddressofnode2>:6432,<ipaddressofnode3>:6432/bdrdb

This format of string can be used with the psql command, so if our database nodes were on Ip addresses 192.168.9.10, 192.168.10.10 and 192.168.10.11, we
could use:

psql postgresql://enterprisedb@192.168.9.10:6432,192.168.10.10:6432,192.168.11.10:6432/bdrdb

You can also embed the password in the created URL. If we are using the enterprisedb user and the password for the enterprisedb user is notasecret then the
URL would look like:

psql postgresql://enterprisedb:notasecret@192.168.9.10:6432,192.168.10.10:6432,192.168.11.10:6432/bdrdb

Actual passwords are more complex than that and may contain special characters. You will need to urlencode the password to ensure that it doesn't trip up the
shell, the command or the driver you are using.

Passwords should not be embeddedPasswords should not be embedded

While we have shown you how to embed a password, we recommend that you do not do this. The password is easily extracted from the URL and can easily
be saved in insecure locations. Consider other ways of passing the password.

Making a Java Connection URL

Finally, the URL we have created is fine for many Postgres applications and clients, but those based on Java require one change to allow Java to invoke the
appropriate driver. Precede the URL with jdbc: to make a Java compatible URL.

jdbc:postgresql://enterprisedb@192.168.9.10:6432,192.168.10.10:6432,192.168.11.10:6432/bdrdb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 46

https://www.postgresql.org/docs/current/libpq-connect.html#id-1.7.3.8.3.6

Moving On

You are now equipped to connect your applications to your cluster, with all the connection credentials and URLs you need.

6.6 Exploring failover handling with PGD

With a high-availability cluster, the ability to failover is crucial to the overall resilience of the cluster. When the lead data nodes stops working for whatever reason,
applications need to be able to continue working with the database with little or no interruption. For PGD, that means directing applications to the new lead data
node, which takes over automatically. This is where PGD Proxy is useful. It works with the cluster and directs traffic to the lead data node automatically.

In this exercise, you'll create an application that sends data to the database regularly. Then you'll first softly switch lead data node by requesting a change through
the PGD CLI. And then you'll forcibly shut down a database instance and see how PGD handles that.

Your quick started configuration

This exploration assumes that you created your PGD cluster using the quick start for Docker, the quick start for AWS or the quick start for Linux hosts.

At the end of each quick starts, you'll have a cluster with four nodes and these roles:

Host name Host role

kaboom PGD data node and pgd-proxy co-host

kaftan PGD data node and pgd-proxy co-host

kaolin PGD data node and pgd-proxy co-host

kapok Barman backup node

You'll use these hostnames throughout this exercise.

A best practice recommendationA best practice recommendation

This example is based on the quick started configuration and, for speed and simplicity, it uses the barman backup server in place of creating a bastion
server. It also uses the barman login to the Postgres cluster.

In a production environment, it is recommended that you create a separate bastion server to run the failover experiment from and to create an appropriate
Postgres user to log into the cluster.

Installing xpanes

Xpanes optionalXpanes optional

We recommend the xpanes utility for this exercise. It allows you to easily switch between multiple terminal sessions. If you prefer to use multiple
terminals, tmux or another terminal multiplexer, you can do so. Just make sure you can easily switch between multiple terminal sessions.

You'll be using xpanes , a utility that allows you to quickly create multiple terminal sessions that you can easily switch between. It isn't installed by default, so
you'll have to install it. For this exercise, you'll be launching xpanes from the system where you ran tpaexec to configure your quick-start cluster.

If the system is running Ubuntu, run this:

sudo apt install software-properties-common

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 47

sudo add-apt-repository ppa:greymd/tmux-xpanes
sudo apt update
sudo apt install tmux-xpanes

These are the installation instructions from the xpanes repository. If you aren't on Ubuntu, the repository also contains installation instructions for other systems.

Connecting to the four servers

With xpanes installed, you can create an SSH session with all four servers by running:

cd democluster
xpanes -d -c "ssh -F ssh_config {}" "kaboom" "kaolin" "kaftan" "kapok"

After running these commands, there are four panes. The four panes are connected to kaboom, kaolin, kaftan, and kapok and logged in as the root user on each. You
need this privilege so you can easily stop and start services later in the exercise.

Press Control-bControl-b followed by qq to briefly display the numeric values for each pane.

To switch the focus between the panes, you can use Control-bControl-b and the cursor keys to navigate between them. Or you can use Control-bControl-b followed by qq and the
number of the pane you want to focus on. We'll show both ways.

Use Control-b ↓ Control-b →Control-b ↓ Control-b → or Control-b q 3Control-b q 3 to move the focus to the bottom-right pane, which is the kapok host. This server is responsible for performing
backups. You'll use this as the base of operations for your demo application. You can use Barman credentials to connect to the database servers and proxies:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 48

https://github.com/greymd/tmux-xpanes

sudo -iu barman
psql -h kaboom -p 6432 bdrdb

This code connects to the proxy on the kaboom host, which also runs a Postgres instance as part of the cluster.

The next step is to create the table your application will write to:

drop table if exists ping cascade;
CREATE TABLE ping (id SERIAL PRIMARY KEY, node TEXT, timestamp TEXT) ;

This code first drop the ping table. Then it recreates the ping table with an id primary key and two text fields for a node and timestamp. The table should now
be ready. To check, use Control-b ← Control-b ↑Control-b ← Control-b ↑ or Control-b q 0Control-b q 0 to move to the top left pane, which puts you on the kaboom server. In this pane, become the
enterprisedb user so you can easily connect to the database:

sudo -iu enterprisedb

You can now connect to the local database by running:

psql bdrdb

This command connects you directly to the local database instance on kaboom. Use \dt to view the available tables:

bdrdb=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+------+-------+--------
 public | ping | table | barman
(1 row)

Running \d ping shows that the DDL to create ping is on the kaboom server:

bdrdb=# \d ping
 Table "public.ping"
 Column | Type | Collation | Nullable | Default
-----------+---------+-----------+----------+----------------------------------
 id | integer | | not null | nextval('ping_id_seq'::regclass)
 node | text | | |
 timestamp | text | | |
Indexes:
 "ping_pkey" PRIMARY KEY, btree (id)

If you want to be sure that this table is replicated, you can connect to another node in the cluster and look. The \c command in psql lets you connect to another
server. To connect to the kaftan node, run:

\c - - kaftan

You'll see a login message similar to this:

psql.bin (16.2.0, server 16.2.0) SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression:
off)
You are now connected to database "bdrdb" as user "enterprisedb" on host "kaftan" (address "10.33.25.233") at
port "5444".
bdrdb=#

Run \dt and \d ping , and you'll see the same results on the kaftan node.

To reconnect to the kaboom node, run:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 49

\c - - kaboom

Setting up a monitor

Next, you want to monitor the activity of the ping table. Enter this SQL to display the 10 most recent entries:

To run this command more than once, use the \watch command in the shell, which executes the last query at regular intervals. To update every second, enter:

\watch 1

So far, there's nothing to see. You'll add activity soon.

Creating pings

Return to the Barman host kapok by using Control-b ↓ Control-b →Control-b ↓ Control-b → or Control-b q 3Control-b q 3.

This session is still logged into the psql session. Since you next want to run a shell script, you need to exit psql. Press Control-dControl-d.

The shell prompt now reads:

barman@kapok:~$

If it says admin@kapok or root@kapok , run sudo -iu barman to become the Barman user again.

The application you'll create is simple. It gets the node to write to and a timestamp for the ping. Then, as quickly as it can, it writes a new ping to the ping table.

In the shell, enter:

while true; do psql -h kaftan,kaolin,kaboom -p 6432 bdrdb -c "INSERT INTO ping(node, timestamp) select node_name,
current_timestamp from bdr.local_node_summary;"; done

In a more readable form, that is:

while true;
 do psql -h kaftan,kaolin,kaboom -p 6432 bdrdb -c \
 "INSERT INTO ping(node, timestamp) select node_name, current_timestamp from bdr.local_node_summary;"
 done

In a constant loop, you call the psql command, telling it to connect to any of the three proxies as hosts, giving the proxy port and selecting the bdrdb database. You
also pass a command that inserts two values into the ping table. One of the values comes from bdr.local_node_summary , which contains the name of the
node you're actually connected to. The other value is the current time.

Once the loop is running, new entries appear in the table. You'll see them in the top-left pane where you set up the monitor.

You can now start testing failover.

Displaying the write leader

selectselect ** fromfrom ping orderorder byby timestamp descdesc limitlimit 10;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 50

For this part of the process, switch to the host kaftan, which is in the lower-left corner. Use Control-b ←Control-b ← or Control-b q 2Control-b q 2 to switch focus to it.

To gain appropriate privileges to run pgd , at the PGD command line interface, run:

sudo -iu enterprisedb

To see the state of the cluster, run:

pgd show-groups

You'll see output like this:

Group Group ID Type Parent Group Location Raft Routing Write Leader
----- -------- ---- ------------ -------- ---- ------- ------------
democluster 1935823863 global true false
dc1_subgroup 1302278103 data democluster dc1 true true kaboom

The global group democluster includes all the subgroups. The dc1_subgroup is the data cluster you're working with. That group name value is derived from
the location given in the quick start when you configured this cluster. Each location gets its own subgroup so you can manage it independently of other locations, or
clusters.

If you skip to the right of the table, you can see that the current write leader for the group—the server where all the proxies send their updates—is kaboom.

Send a switchover command to the cluster group to change leader. Run this command:

pgd switchover --group-name dc1_subgroup --node-name kaolin

The node name is the host name for another data node in the dc1_subgroup group.

You'll see one of two responses. When you ran the show-groups command, if it showed kaolin as the write leader, you'll see:

Error: "kaolin" is already a write leader

This means that kaolin was already elected write leader, so switching has no effect. For this exercise, retry the switchover to another host, substituting kaboom or
kaftan as the node name.

When you select a host that wasn't the current write leader, you'll see the other response:

switchover is complete

If you look in the top-left pane, you'll see the inserts from the script switching and being written to the node you just switched to.

Observe the id numberObserve the id number

Notice that the id number being generated is from a completely different range of values, too. That's because the system transparently made the
sequence generating the ID a global sequence. Read more about global sequences and how they work in Sequences.

You might also notice an error in the lower-right pane, as an inflight update is canceled by the switch. The script then continues writing.

Losing a node

Being able to switch leader is useful for planned maintenance; you tell the cluster to change configuration. What if unexpected changes happen? You'll create that
scenario now.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 51

In the lower-left pane, set the leader to kaolin.

pgd switchover --group-name dc1_subgroup --node-name kaolin

Then change focus to the top-right pane using Control-b ↑ Control-b →Control-b ↑ Control-b → or Control-b q 1Control-b q 1, which is the session on the kaolin host.

Turn off the Postgres server by running:

sudo systemctl stop postgres.service

In the top-left pane, you'll see the monitored table switch from kaolin to another node as the cluster subgroup picks a new leader. The script in the lower-right pane
might show some errors as updates are canceled. However, as soon as a new leader is elected, it starts routing traffic to that leader.

Showing node states

Switch to the lower-left pane using Control-b ↓ Control-b ←Control-b ↓ Control-b ← or Control-b q 2Control-b q 2, and run:

pgd show-nodes

You'll see something like:

Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
kaboom 2710197610 dc1_subgroup data ACTIVE ACTIVE Up 3
kaftan 3490219809 dc1_subgroup data ACTIVE ACTIVE Up 2
kaolin 2111777360 dc1_subgroup data ACTIVE ACTIVE Unreachable 1

The kaolin node is down, and updates are going to a different write leader.

Monitoring lag

While kaolin is down, the logical replication at the heart of PGD is tracking how far out of sync kaolin is with the cluster. To see that for yourself, run:

psql bdrdb -c "select * from bdr.node_replication_rates;"

This command displays the current replication rates between servers:

 peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size |
apply_rate | catchup_interval
--------------+-------------+-----------+------------+-----------------+------------------+-----------------+---------
---+------------------
 2710197610 | kaboom | 0/769F650 | 0/769F650 | 00:00:00 | 0 | 0 bytes |
1861 | 00:00:00
 | kaolin | 0/7656648 | 0/7656648 | 00:03:07.252266 | 299016 | 292 kB |
|
(2 rows)

Looking at this output, you can see kaolin has a three-minute replay lag and around 292KB of data to catch up on if it came back now. The longer kaolin is down, the
larger the replay lag gets. If you rerun the monitoring command, you'll see the numbers went up:

 peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size |
apply_rate | catchup_interval

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 52

--------------+-------------+-----------+------------+-----------------+------------------+-----------------+---------
---+------------------
 2710197610 | kaboom | 0/76B1D28 | 0/76B1D28 | 00:00:00 | 0 | 0 bytes |
1743 | 00:00:00
 | kaolin | 0/7656648 | 0/7656648 | 00:03:53.045704 | 374496 | 366 kB |
|
(2 rows)

Another 46 seconds have passed, and the lag has grown by 74KB. Next, bring back the node, and see how the system recovers.

Restarting a node

You can bring back the Postgres service on kaolin. Switch back to the top-right pane using Control-b ↑ Control-b →Control-b ↑ Control-b → or Control-b q 1Control-b q 1, and run:

sudo systemctl start postgres.service

You won't see any change. Although the database service is back up and running, the cluster isn't holding an election, and so the leader remains in place. Switch to
the lower-left pane using Control-b ↓ Control-b ←Control-b ↓ Control-b ← or Control-b q 2Control-b q 2, and run:

pgd show-nodes

Now you'll see:

Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
kaboom 2710197610 dc1_subgroup data ACTIVE ACTIVE Up 3
kaftan 3490219809 dc1_subgroup data ACTIVE ACTIVE Up 2
kaolin 2111777360 dc1_subgroup data ACTIVE ACTIVE Up 1

As soon as kaolin is back in the cluster, it begins synchronizing with the cluster. It does that by catching up on that replay data. Run:

psql bdrdb -c "select * from bdr.node_replication_rates;"

The output looks like this:

 peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size |
apply_rate | catchup_interval
--------------+-------------+-----------+------------+------------+------------------+-----------------+------------+-

 2710197610 | kaboom | 0/8092938 | 0/8092938 | 00:00:00 | 0 | 0 bytes | 2321
| 00:00:00
 2111777360 | kaolin | 0/8092938 | 0/8092938 | 00:00:00 | 0 | 0 bytes | 337426
| 00:00:00
(2 rows)

As you can see, there's no replay lag now, as kaolin has completely caught up automatically.

With kaolin fully back in service, you can leave everything as it is. There's no need to change the server that's write leader. The failover mechanism is always ready to
bring another server up to write leader when needed.

If you want, you can make kaolin leader again by running:

pgd switchover --group-name dc1_subgroup --node-name kaolin

This command returns kaolin to write lead. The application's updates will follow, as the proxies track the write leader.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 53

Proxy failover

Proxies can also failover. To experience this, make sure your focus is still on the lower-left pane, and run:

pgd show-proxies

You'll see:

Proxy Group Listen Addresses Listen Port
----- ----- ---------------- -----------
kaboom dc1_subgroup [0.0.0.0] 6432
kaftan dc1_subgroup [0.0.0.0] 6432
kaolin dc1_subgroup [0.0.0.0] 6432

Enter exit to exit the enterprisedb user and return to the admin/root shell. You can now stop the proxy service on this node by running:

systemctl stop pgd-proxy.service

A brief error appears in the lower-right window as the script switches to another proxy. The write leader doesn't change, though, so the switch of proxy doesn't show
in the top-left pane where the monitor query is running.

Bring the proxy service on kaftan back by running:

systemctl start pgd-proxy.service

Exiting TmuxExiting Tmux

You can quickly exit Tmux and all the associated sessions. First terminate any running processes, as they otherwise continue running after the session is
killed. Press Control-BControl-B and then enter :kill-session . This approach is simpler than quitting each pane's session one at a time using Control-DControl-D or
exit .

Other scenarios

This example uses the quick-start configuration of three data nodes and one backup node. You can configure a cluster to have two data nodes and a witness node,
which is less resilient to a node failing. Or you can configure five data nodes, which is much more resilient to a node failing. With this configuration, you can explore
how failover works for your applications. For clusters with multiple locations, the same basic rules apply: taking a server down elects a new write leader that proxies
now point to.

Further reading

Read more about the management capabilities of the PGD CLI.
Learn more about monitoring replication using SQL.

6.7 Exploring conflict handling with PGD

In a multi-master architecture like PGD, conflicts happen. PGD is built to handle them.

A conflict can occur when one database node has an update from an application to a row and another node has a different update to the same row. This type of
conflict is called a row-level conflict. Conflicts aren't errors. Resolving them effectively is core to how Postgres Distributed maintains consistency.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 54

The best way to handle conflicts is not to have them in the first place! Use PGD's Always-On architecture with proxies to ensure that your applications write to the
same server in the cluster.

When conflicts occur, though, it's useful to know how PGD resolves them, how you can control that resolution, and how you can find out that they're happening.
Row insertion and row updates are two actions that can cause conflicts.

To see how it works, you need to open a command line view of all the servers.

Your quick start configuration

This exploration assumes that you created your PGD cluster using the quick start for Docker, the quick start for AWS, or the quick start for Linux hosts.

At the end of each quick start, you'll have a cluster with four nodes and these roles:

Host name Host role

kaboom PGD data node and pgd-proxy co-host

kaftan PGD data node and pgd-proxy co-host

kaolin PGD data node and pgd-proxy co-host

kapok Barman backup node

You'll use these hostnames throughout this exercise.

Installing xpanes

Xpanes optionalXpanes optional

We recommend the xpanes utility for this exercise. It allows you to easily switch between multiple terminal sessions. If you prefer to use multiple
terminals, tmux or another terminal multiplexer, you can do so. Just make sure you can easily switch between multiple terminal sessions.

You'll use xpanes , a utility that allows you to quickly create multiple terminal sessions that you can easily switch between. It isn't installed by default, so you'll
have to install it. Start by connecting to the kaboom node with ssh:

cd democluster && ssh -F ssh_config kaboom

If you're running the quick start on Docker, you'll be using Rocky Linux, a Red Hat derivative. To perform the xpanes install, run:

dnf -y install xpanes

If you're running the quick start on AWS, you'll be using Debian Linux. To perform the xpanes install, run:

wget https://github.com/greymd/tmux-xpanes/releases/download/v4.1.4/tmux-xpanes_v4.1.4.deb
sudo apt -y install ./tmux-xpanes*.deb
rm tmux-xpanes*.deb

Connecting to four servers

You need to be logged in as the enterprisedb user to allow authentication to work:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 55

sudo -iu enterprisedb

Then, run the following command to connect to three database servers and a proxy server:

xpanes -d -c "psql postgresql://enterprisedb@{}/bdrdb?sslmode=require" "kaboom:5444" "kaftan:5444" "kaolin:5444"
"kaboom:6432"

xpanes takes the command after -c and uses the values in the arguments that follow to create a command to run. That means that, after you run it, there will be
four panes. Three panes will be connected to the database nodes kaboom, kaftan, and kaolin on port 5444. One will be connected to the pgd-proxy running on
kaboom on port 6432. Each one will be logged into the database as enterprisedb.

Press Control-bControl-b followed by qq to briefly display the numeric values for each pane.

To switch the focus between the panes, you can use Control-bControl-b and the cursor keys to navigate between them. Or you can use Control-bControl-b followed by qq and the
number of the pane you want to focus on. We'll show both ways.

Move to the bottom-left pane using **Control-b ↓ Control-b → or **Control-b q 3**.

Preparing for conflicts

To make a conflict, you first need a simple table. In the pane that currently has focus, enter:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 56

drop table if exists test_conflict;
create table test_conflict(
 id integer primary key ,
 value_1 text);

Monitoring conflicts

In the pane that currently has focus, enter:

The select command displays the conflict history for the cluster. The \watch 1 command is a psql command that reruns the preceding command every
second.

You are now ready to generate a conflict.

Creating a conflict

The most basic form of conflict is when an insert happens to a table on two different nodes and both have the same primary key. You can now create that scenario
and observe it.

Move to the top-left pane using Control-b ↑ Control-b ←Control-b ↑ Control-b ← or Control-b q 0Control-b q 0. This pane is the kaboom node. Start a transaction there, and insert a row:

start transaction;
insert into test_conflict values (1, 'from kaboom');

Next, move to the top-right pane using Control-b →Control-b → or Control-b q 1Control-b q 1. This pane is the kaftan node. Here, you'll also start a transaction and insert into the same row
with different data.

start transaction;
insert into test_conflict values (1, 'from kaftan');

You now have two transactions open on different servers, with an insert operation already performed successfully. You need to commit both transactions at this
point:

Use Control-b ←Control-b ← or Control-b q 0Control-b q 0, and then enter commit; .
Use Control-b →Control-b → or Control-b q 1Control-b q 1, and then enter commit; .

You'll see that both commits are working. However, in the bottom-right pane, you can see the conflict being detected.

selectselect ** fromfrom bdr.conflict_history_summary
\watch 1

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 57

A row in the conflict history now notes a conflict in the table where the insert_exists . It also notes that the resolution for this conflict is that the newer
record, based on the timing of the commit, is retained. This conflict is called an INSERT/INSERT conflict. You can read more about this type of conflict in
INSERT/INSERT conflicts.

Creating an update conflict

When different updates to the same records take place on different nodes, a conflict occurs. You can create that scenario with the current configuration, too. Leave
\watch 1 running in the bottom-right pane.

Move to the top-left pane using Control-b ←Control-b ← or Control-b q 0Control-b q 0. This pane is the kaboom node. Here, start a transaction and update a row:

start transaction;
update test_conflict set value_1 = 'update from kaboom' where id = 1;

Next, move to the top-right pane using Control-b →Control-b → or Control-b q 1Control-b q 1. This pane is the kaftan node. Here, also start a transaction, and update the same row with
different data:

start transaction;
update test_conflict set value_1 = 'update from kaftan' where id = 1;

You now have two transactions open on different servers, with an update operation already performed successfully. You need to commit both transactions at this
point:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 58

Use Control-b cursor-leftControl-b cursor-left or Control-b q 0Control-b q 0, and then enter commit; .
Use Control-b cursor-rightControl-b cursor-right or Control-b q 1Control-b q 1, and then enter commit; .

Again you'll see both commits working. And, again, in the bottom-right pane, you can see the update conflict being detected.

An additional row in the conflict history shows an update_origin_change conflict occurred and that the resolution was apply_remote . This resolution
means that the remote change was applied, updating the record. This conflict is called an UPDATE/UPDATE conflict and is explained in more detail in
UPDATE/UPDATE conflicts.

Exiting TmuxExiting Tmux

You can quickly exit Tmux and all the associated sessions. First terminate any running processes, as they will otherwise continue running after the session
is killed. Press Control-bControl-b and then enter :kill-session . This approach is simpler than quitting each pane's session one at a time using Control-DControl-D or
exit .

Other conflicts

You are now equipped to explore all the possible conflict scenarios and resolutions that can occur. For full details of how conflicts are managed, see Conflicts in the
documentation. While ideally you should avoid conflicts, it's important to know that, when they do happen, they're recorded and managed by Postgres Distributed's
integrated and configurable conflict resolver.

6.8 Next steps with PGD

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 59

Going further with your PGD cluster

Architecture

In this quick start, we created a single region cluster of high availability Postgres databases. This is the, Always On Single Location architecture, one of a range of
available PGD architectures. Other architectures include Always On Multi-Location, with clusters in multiple data centers working together, and variations of both
with witness nodes enhancing resilience. Read more in architectural options.

Postgres versions

In this quick start, we deployed EDB Postgres Advanced Server (EPAS) to the database nodes. PGD is able to deploy a three different kinds of Postgres distributions,
EPAS, EDB Postgres Extended Server and open-source PostgreSQL. The selection of database affects PGD, offering different capabilities dependant on server.

Open-source PostgreSQL does not support CAMO
EDB Postgres Extended Server supports CAMO, but does not offer Oracle compatibility
EDB Postgres Advanced Server supports CAMO and offers optional Oracle compatibility

Read On

Learn PGD's terminology - from Asynchronous Replication to Write Scalability
Find out how applications work with PGD and how common Postgres features like sequences are globally distributed
Discover how PGD supports rolling upgrades of your clusters
Take control of routing and use SQL to control the PGD Proxies
Engage with the PGD CLI to manage and monitor your cluster

Deprovisioning the cluster

When you're done testing the cluster, you'll want to deprovision it.

tpaexec deprovision democluster

With a Docker deployment, deprovisioning tears down the Docker containers, network, and other local configuration.
With an AWS deployment, it will remove the EC2 instances, VPC configuration and other associated resources. Note that it will leave the S3 bucket it create;
this will have to be manually removed.

7 Planning your PGD deployment

Planning your PGD deployment involves understanding the requirements of your application and the capabilities of PGD. This section provides an overview of the
key considerations for planning your PGD deployment.

Choosing your architecture: Understand the different architectures that PGD supports and choose the one that best fits your requirements.

Choosing a Postgres distribution: Choose the Postgres distribution to deploy with PGD.

Choosing your deployment method: Pick the deployment method that suits your needs.

Other considerations: Consider other factors that may affect your deployment.

Limitations: Know the limitations of PGD and their effect on your plans.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 60

https://www.enterprisedb.com/docs/pgd/5/architectures/
https://www.enterprisedb.com/docs/pgd/5/choosing_server

7.1 Choosing your architecture

Always On architectures reflect EDB’s Trusted Postgres architectures. They encapsulate practices and help you to achieve the highest possible service availability in
multiple configurations. These configurations range from single-location architectures to complex distributed systems that protect from hardware failures and data
center failures. The architectures leverage EDB Postgres Distributed’s multi-master capability and its ability to achieve 99.999% availability, even during
maintenance operations.

You can use EDB Postgres Distributed for architectures beyond the examples described here. Use-case-specific variations have been successfully deployed in
production. However, these variations must undergo rigorous architecture review first.

Always On architectures can be deployed using EDB’s standard deployment tool
Trusted Postgres Architect (TPA) or configured manually.

Standard EDB Always On architectures

EDB has identified a set of standardized architectures to support single- or multi-location deployments with varying levels of redundancy, depending on your
recovery point objective (RPO) and recovery time objective (RTO) requirements.

The Always ON architecture uses three database node groups as a basic building block. You can also use a five-node group for extra redundancy.

EDB Postgres Distributed consists of the following major building blocks:

Bi-Directional Replication (BDR) — A Postgres extension that creates the multi-master mesh network
PGD Proxy — A connection router that makes sure the application is connected to the right data nodes.

All Always On architectures protect an increasing range of failure situations. For example, a single active location with two data nodes protects against local
hardware failure but doesn't provide protection from location (data center or availability zone) failure. Extending that architecture with a backup at a different
location ensures some protection in case of the catastrophic loss of a location. However, you still must restore the database from backup first, which might violate
RTO requirements. Adding a second active location connected in a multi-master mesh network ensures that service remains available even if a location goes offline.
Finally, adding a third location (this can be a witness-only location) allows global Raft functionality to work even if one location goes offline. The global Raft is
primarily needed to run administrative commands. Also, some features like DDL or sequence allocation might not work without it, while DML replication can
continue to work even without global Raft.

Each architecture can provide zero RPO, as data can be streamed synchronously to at least one local master, guaranteeing zero data loss in case of local hardware
failure.

Increasing the availability guarantee always drives added cost for hardware and licenses, networking requirements, and operational complexity. It's important to
carefully consider the availability and compliance requirements before choosing an architecture.

Architecture details

By default, application transactions don't require cluster-wide consensus for DML (selects, inserts, updates, and deletes), allowing for lower latency and better
performance. However, for certain operations, such as generating new global sequences or performing distributed DDL, EDB Postgres Distributed requires an odd
number of nodes to make decisions using a Raft-based consensus model. Thus, even the simpler architectures always have three nodes, even if not all of them are
storing data.

Applications connect to the standard Always On architectures by way of multi-host connection strings, where each PGD Proxy server is a distinct entry in the multi-
host connection string. You must always have at least two proxy nodes in each location to ensure high availability. You can colocate the proxy with the database
instance, in which case we recommend putting the proxy on every data node.

Other connection mechanisms have been successfully deployed in production. However, they aren't part of the standard Always On architectures.

Always On Single Location

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 61

https://raft.github.io/

Additional replication between data nodes 1 and 3 isn't shown but occurs as part of the replication mesh
Redundant hardware to quickly restore from local failures

3 PGD nodes
Can be 3 data nodes (recommended)
Can be 2 data nodes and 1 witness that doesn't hold data (not depicted)

A PGD Proxy for each data node with affinity to the applications
Can be colocated with data node (recommended)
Can be located on a separate node

Configuration and infrastructure symmetry of data nodes is expected to ensure proper resources are available to handle application workload when
rerouted

Barman for backup and recovery (not depicted)
Offsite is optional but recommended
Can be shared by multiple PGD clusters

Postgres Enterprise Manager (PEM) for monitoring (not depicted)
Can be shared by multiple PGD clusters

Always On multi-location

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 62

Application can be Active/Active in each location or can be Active/Passive or Active DR with only one location taking writes.
Additional replication between data nodes 1 and 3 isn't shown but occurs as part of the replication mesh.
Redundant hardware to quickly restore from local failures.

6 PGD nodes total, 3 in each location
Can be 3 data nodes (recommended)
Can be 2 data nodes and 1 witness which does not hold data (not depicted)

A PGD-Proxy for each data node with affinity to the applications
can be co-located with data node (recommended)
can be located on a separate node

Configuration and infrastructure symmetry of data nodes and locations is expected to ensure proper resources are available to handle application
workload when rerouted

Barman for backup and recovery (not depicted).
Can be shared by multiple PGD clusters

Postgres Enterprise Manager (PEM) for monitoring (not depicted).
Can be shared by multiple PGD clusters

An optional witness node must be placed in a third region to increase tolerance for location failure.
Otherwise, when a location fails, actions requiring global consensus are blocked, such as adding new nodes and distributed DDL.

Choosing your architecture

All architectures provide the following:

Hardware failure protection
Zero downtime upgrades
Support for availability zones in public/private cloud

Use these criteria to help you to select the appropriate Always On architecture.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 63

Single Data Location Two Data Locations Two Data Locations +
Witness

Three or More Data
Locations

Locations needed 1 2 3 3

Fast restoration of local HA after data
node failure

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Yes - if 3 PGD data
nodes
No - if 2 PGD data
nodes

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Data protection in case of location
failure

No (unless offsite backup) Yes Yes Yes

Global consensus in case of location
failure

N/A No Yes Yes

Data restore required after location
failure

Yes No No No

Immediate failover in case of location
failure

No - requires data restore from
backup

Yes - alternate
Location

Yes - alternate Location Yes - alternate Location

Cross-location network traffic Only if backup is offsite Full replication
traffic

Full replication traffic Full replication traffic

License cost 2 or 3 PGD data nodes 4 or 6 PGD data
nodes

4 or 6 PGD data nodes 6+ PGD data nodes

Adding flexibility to the standard architectures

To provide the data resiliency needed and proximity to applications and to the users maintaining the data, the single-location architecture can be deployed in as
many locations as you want. While EDB Postgres Distributed has a variety of conflict-handling approaches available, do take care to minimize the number of
expected collisions if allowing write activity from geographically disparate locations.

You can also expand the standard architectures with two additional types of nodes:

Subscriber only nodesSubscriber only nodes, which you can use to achieve additional read scalability and to have data closer to users when the majority of an application’s
workload is read intensive with infrequent writes. You can also leverage them to publish a subset of the data for reporting, archiving, and analytic needs.

Logical standbysLogical standbys, which receive replicated data from another node in the PGD cluster but don't participate in the replication mesh or consensus. They
contain all the same data as the other PGD data nodes and can quickly be promoted to a master if one of the data nodes fails to return the cluster to full
capacity/consensus. You can use them in environments where network traffic between data centers is a concern. Otherwise, three PGD data nodes per
location is always preferred.

7.2 Choosing a Postgres distribution

EDB Postgres Distributed can be deployed with three different Postgres distributions: PostgreSQL, EDB Postgres Extended Server, or EDB Postgres Advanced Server.
The availability of particular EDB Postgres Distributed features depends on the Postgres distribution being used. Therefore, it's essential to adopt the Postgres
distribution best suited to your business needs. For example, if having the Commit At Most Once (CAMO) feature is mission critical to your use case, don't adopt
open source PostgreSQL, which doesn't have the core capabilities required to handle CAMO.

The following table lists features of EDB Postgres Distributed that are dependent on the Postgres distribution and version.

Feature PostgreSQL EDB Postgres Extended EDB Postgres Advanced

Rolling application and database upgrades Y Y Y

Row-level last-update wins conflict resolution Y Y Y

DDL replication Y Y Y

Granular DDL Locking Y Y Y

Streaming of large transactions v14+ v13+ v14+

Distributed sequences Y Y Y

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 64

Subscribe-only nodes Y Y Y

Monitoring Y Y Y

OpenTelemetry support Y Y Y

Parallel apply Y Y Y

Conflict-free replicated data types (CRDTs) Y Y Y

Column-level conflict resolution Y Y Y

Transform triggers Y Y Y

Conflict triggers Y Y Y

Asynchronous replication Y Y Y

Legacy synchronous replication Y Y Y

Group Commit N Y 14+

Commit At Most Once (CAMO) N Y 14+

Eager Conflict Resolution N Y 14+

Lag Control N Y 14+

Decoding Worker N 13+ 14+

Lag tracker N Y 14+

Missing partition conflict N Y 14+

No need for UPDATE Trigger on tables with TOAST N Y 14+

Automatically hold back FREEZE N Y 14+

Transparent Data Encryption N 15+ 15+

Feature PostgreSQL EDB Postgres Extended EDB Postgres Advanced

7.3 Choosing your deployment method

You can deploy and install EDB Postgres Distributed products using the following methods:

-- Trusted Postgres Architect (TPA) is an orchestration tool that uses Ansible to build Postgres clusters using a set of reference architectures that document how to
set up and operate Postgres in various scenarios. TPA represents the best practices followed by EDB, and its recommendations apply to quick testbed setups just as
they do to production environments. TPA's flexibility allows deployments to virtual machines, AWS cloud instances or Linux host hardware. See Deploying with TPA
for more information.

BigAnimal is a fully managed database-as-a-service with built-in Oracle compatibility that runs in your cloud account or BigAnimal's cloud account where it's
operated by our Postgres experts. EDB BigAnimal makes it easy to set up, manage, and scale your databases. The addition of distributed high-availability
support powered by EDB Postgres Distributed (PGD) enables single- and and multi-region Always On clusters. See Distributed high availability in the
BigAnimal documentation for more information.

EDB Postgres Distributed for Kubernetes is a Kubernetes operator designed, developed, and supported by EDB. It covers the full lifecycle of highly available
Postgres database clusters with a multi-master architecture, using PGD replication. It's based on the open source CloudNativePG operator and provides
additional value, such as compatibility with Oracle using EDB Postgres Advanced Server, Transparent Data Encryption (TDE) using EDB Postgres Extended or
Advanced Server, and additional supported platforms including IBM Power and OpenShift.

TPA BigAnimal Kubernetes

Single region ✓ ✓ ✓
Active-Active support 2+ regions 2 regions 2 regions

Write/Read routing Local or global Local Local

Automated failover AZ or Region AZ AZ

Major version upgrades ✓ - -

Subscriber-only nodes
(read replicas)

✓ - -

Logical standby nodes ✓ - -

PgBouncer ✓ - -

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 65

https://www.enterprisedb.com/docs/tde/latest/
https://www.enterprisedb.com/docs/tpa/latest
https://www.enterprisedb.com/docs/pgd/latest/install-admin/admin-tpa/installing.mdx
https://www.enterprisedb.com/docs/biganimal/latest/overview/02_high_availability/distributed_highavailability/
https://www.enterprisedb.com/docs/biganimal/latest
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/

Selective data replication ✓ ✓ ✓
Maintenance windows per region ✓ ✓ ✓

Target availability 99.999% SLO 99.99 SLA (single)
99.995% SLA (multi)

99.999% SLO

TPA BigAnimal Kubernetes

7.4 Other considerations

Review these other considerations when planning your deployment.

Data consistency

Read about Conflicts to understand the implications of the asynchronous operation mode in terms of data consistency.

Deployment

PGD is intended to be deployed in one of a small number of known-good configurations, using either Trusted Postgres Architect or a configuration management
approach and deployment architecture approved by Technical Support.

Log messages and documentation are currently available only in English.

Sizing considerations

For production deployments, EDB recommends a minimum of 4 cores for each Postgres data node. Witness nodes don't participate in the data replication operation
and don't have to meet this requirement. One core is enough without subgroup Raft. Two cores are enough when using subgroup Raft. Always size logical standbys
exactly like the data nodes to avoid performance degradations in case of a node promotion. In production deployments, PGD Proxy nodes require a minimum of 1
core and must increase incrementally with an increase in the number of database cores in approximately a 1:10 ratio. We recommend detailed benchmarking of
your specific performance requirements to determine appropriate sizing based on your workload. The EDB Professional Services team is available to assist if
needed.

For development purposes, don't assign Postgres data nodes fewer than two cores. The sizing of Barman nodes depends on the database size and the data change
rate.

You can deploy Postgres data nodes, Barman nodes, and PGD Proxy nodes on virtual machines or in a bare metal deployment mode. However, don't deploy multiple
data nodes on VMs that are on the same physical hardware, as that reduces resiliency. Also don't deploy multiple PGD Proxy nodes on VMs on the same physical
hardware, as that, too, reduces resiliency.

Single PGD Proxy nodes can be colocated with single PGD data nodes.

Clocks and timezones

EDB Postgres Distributed is designed to operate with nodes in multiple timezones, allowing a truly worldwide database cluster. Individual servers don't need to be
configured with matching timezones, though we do recommend using log_timezone = UTC to ensure the human readable server log is more accessible and
comparable.

Synchronize server clocks using NTP or other solutions.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 66

https://www.enterprisedb.com/docs/tpa/latest

Clock synchronization isn't critical to performance, as is the case with some other solutions. Clock skew can affect origin conflict detection, though EDB Postgres
Distributed provides controls to report and manage any skew that exists. EDB Postgres Distributed also provides row-version conflict detection, as described in
Conflict detection.

7.5 Limitations

Take these EDB Postgres Distributed (PGD) design limitations into account when planning your deployment.

Nodes

PGD can run hundreds of nodes, assuming adequate hardware and network. However, for mesh-based deployments, we generally don’t recommend running
more than 48 nodes in one cluster. If you need extra read scalability beyond the 48-node limit, you can add subscriber-only nodes without adding connections
to the mesh network.

The minimum recommended number of nodes in a group is three to provide fault tolerance for PGD's consensus mechanism. With just two nodes, consensus
would fail if one of the nodes were unresponsive. Consensus is required for some PGD operations, such as distributed sequence generation. For more
information about the consensus mechanism used by EDB Postgres Distributed, see Architectural details.

Multiple databases on single instances

Support for using PGD for multiple databases on the same Postgres instance is deprecateddeprecated beginning with PGD 5 and will no longer be supported with PGD 6. As we
extend the capabilities of the product, the added complexity introduced operationally and functionally is no longer viable in a multi-database design.

It's best practice and we recommend that you configure only one database per PGD instance.

The deployment automation with TPA and the tooling such as the CLI and PGD Proxy already codify that recommendation.

While it's still possible to host up to 10 databases in a single instance, doing so incurs many immediate risks and current limitations:

If PGD configuration changes are needed, you must execute administrative commands for each database. Doing so increases the risk for potential
inconsistencies and errors.

You must monitor each database separately, adding overhead.

TPAexec assumes one database. Additional coding is needed by customers or by the EDB Professional Services team in a post-deploy hook to set up
replication for more databases.

PGD Proxy works at the Postgres instance level, not at the database level, meaning the leader node is the same for all databases.

Each additional database increases the resource requirements on the server. Each one needs its own set of worker processes maintaining replication, for
example, logical workers, WAL senders, and WAL receivers. Each one also needs its own set of connections to other instances in the replication cluster.
These needs might severely impact performance of all databases.

Synchronous replication methods, for example, CAMO and Group Commit, won’t work as expected. Since the Postgres WAL is shared between the databases,
a synchronous commit confirmation can come from any database, not necessarily in the right order of commits.

CLI and OTEL integration (new with v5) assumes one database.

Durability options (Group Commit/CAMO)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 67

There are various limits on how the PGD durability options work; this covers Group Commit and CAMO and how they operate with PGD features such as the WAL
decoder and transaction streaming.

Also there limitations on interoperability with legacy synchronous replication, interoperability with explicit two-phase commit and unsupported combinations
within commit scope rules.

Consult the Durability limitations section for a full and current listing.

Mixed PGD versions

PGD was developed to enable rolling upgrades of PGD by allowing mixed versions of PGD to operate during the upgrade process. We expect users to run mixed
versions only during upgrades and, once an upgrade starts, that they complete that upgrade. We don't support running mixed versions of PGD except during an
upgrade.

Other limitations

This noncomprehensive list includes other limitations that are expected and are by design. We don't expect to resolve them in the future. Consider these limitations
when planning your deployment:

A galloc sequence might skip some chunks if you create the sequence in a rolled back transaction and then create it again with the same name. Skipping
chunks can also occur if you create and drop the sequence when DDL replication isn't active and then you create it again when DDL replication is active. The
impact of the problem is mild because the sequence guarantees aren't violated. The sequence skips only some initial chunks. Also, as a workaround, you can
specify the starting value for the sequence as an argument to the bdr.alter_sequence_set_kind() function.

8 Deploying and configuring EDB Postgres Distributed

This section covers how to deploy EDB Postgres Distributed and how to configure it.

There are four main ways to deploy PGD:

Manual deployment and administration: How to manually deploy and configure EDB Postgres Distributed on a set of servers.

Trusted Postgres Architect (TPA): How to use TPA to deploy and configure EDB Postgres Distributed to a Docker environment, Linux hosts, or AWS.

EDB Postgres Distributed for Kubernetes: How to deploy and configure EDB Postgres Distributed to a Kubernetes environment.

EDB BigAnimal: How to deploy and configure EDB Postgres Distributed on the EDB BigAnimal service.

8.1 Manual deployment and configuration of PGD

This section covers how to manually deploy and configure EDB Postgres Distributed.

Deploying manually works through the steps needed to:
Provision hosts
Install Postgres
Configure repositories
Install the PGD software
Create a cluster
Check a cluster
Configure PGD proxies
Install and use PGD CLI

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 68

8.1.1 Deploying PGD manually

EDB offers automated PGD deployment using Trusted Postgres Architect (TPA) because it's generally more reliable than manual processes. See Deploying with TPA
for full details about how to install TPA and use its automated best-practice-driven PGD deployment options. Or refer to any of the Quick start walkthroughs, which
use TPA to get you up and running quickly.

To complement automated deployment, and to enable alternative installation and deployment processes, this section looks at the basic operations needed to
manually configure a three-node PGD cluster (with a local subgroup), PGD Proxy, and PGD CLI.

Each step is outlined and followed by a worked example with further detail. This isn't a quick start guide but an exploration of PGD installation. It configures a basic
deployment that will be used for further examples of PGD administration tasks.

The examples deploy a 3-node cluster of EDB Postgres Advanced Server 16 on Red Hat Enterprise Linux 9. These instructions also apply to RHEL derivatives like
Alma Linux, Rocky Linux, or Oracle Linux.

At the highest level, manually deploying PGD involves the following steps. (For completeness, the steps also include instructions for installing PostgreSQL. If you're
familiar with that, then skip to step 3.)

 1: Provisioning and configuring hosts to run the cluster on

 2: Installing your selected Postgres version on each of the hosts

 3: Configuring repositories to install PGD to add PGD capabilities to each host

 4: Initializing Postgres and installing PGD software on each host

 5: Connecting the cluster by connecting to each node and telling it to join the cluster

 6: Checking the cluster by running SQL commands and confirming replication has happened

 7: Configuring proxies by creating a proxy config file

 8: Using PGD CLI, including how to install PGD CLI and how to use it to inspect and manage your cluster

8.1.1.1 Step 1 - Provisioning hosts

Provisioning hosts

The first step in the process of deploying PGD is to provision and configure hosts.

You can deploy to virtual machine instances in the cloud with Linux installed, on-premises virtual machines with Linux installed, or on-premises physical hardware,
also with Linux installed.

Whichever supported Linux operating system and whichever deployment platform you select, the result of provisioning a machine must be a Linux system that you
can access using SSH with a user that has superuser, administrator, or sudo privileges.

Each machine provisioned must be able to make connections to any other machine you're provisioning for your cluster.

On cloud deployments, you can do this over the public network or over a VPC.

On-premises deployments must be able to connect over the local network.

Cloud provisioning guidesCloud provisioning guides

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 69

https://www.enterprisedb.com/docs/pgd/5/deploy-config/quickstart/
https://www.enterprisedb.com/resources/platform-compatibility#bdr

If you're new to cloud provisioning, these guides may provide assistance:

Vendor Platform Guide

Amazon AWS Tutorial: Get started with Amazon EC2 Linux instances

Microsoft Azure Quickstart: Create a Linux virtual machine in the Azure portal

Google GCP Create a Linux VM instance in Compute Engine

Configuring hosts

Create an admin user

We recommend that you configure an admin user for each provisioned instance. The admin user must have superuser or sudo (to superuser) privileges. We also
recommend that the admin user be configured for passwordless SSH access using certificates.

Ensure networking connectivity

With the admin user created, ensure that each machine can communicate with the other machines you're provisioning.

In particular, the PostgreSQL TCP/IP port (5444 for EDB Postgres Advanced Server, 5432 for EDB Postgres Extended and community PostgreSQL) must be open to
all machines in the cluster. If you plan to deploy PGD Proxy, its port must be open to any applications that will connect to the cluster. Port 6432 is typically used for
PGD Proxy.

Worked example

For this example, three hosts with Red Hat Enterprise Linux 9 were provisioned:

host-one
host-two
host-three

Each is configured with an admin user named admin.

These hosts were configured in the cloud. As such, each host has both a public and private IP address.

Name Public IP Private IP

host-one 172.24.117.204 192.168.254.166

host-two 172.24.113.247 192.168.254.247

host-three 172.24.117.23 192.168.254.135

For the example cluster, /etc/hosts was also edited to use those private IP addresses:

192.168.254.166 host-one
192.168.254.247 host-two
192.168.254.135 host-three

8.1.1.2 Step 2 - Installing Postgres

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 70

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://cloud.google.com/compute/docs/create-linux-vm-instance

Installing Postgres

You need to install Postgres on all the hosts.

An EDB account is required to use the EDB Repos 2.0 page where you can get installation instructions. Select your platform and Postgres edition. You're presented
with 2 steps of instructions. The first step covers how to configure the required package repository. The second step covers how to install the packages from that
repository.

Run both steps.

Worked example

This example installs EDB Postgres Advanced Server 16 on Red Hat Enterprise Linux 9 (RHEL 9).

EDB account

You need an EDB account to install both Postgres and PGD.

Use your EDB account to sign in to the EDB Repos 2.0 page where you can select your platform. Then scroll down the list to select the Postgres version you want to
install:

EDB Postgres Advanced Server
EDB Postgres Extended
PostgreSQL

When you select the version of the Postgres server you want, two steps are displayed.

1: Configuring repositories

For step 1, you can choose to use the automated script or step through the manual install instructions that are displayed. Your EDB repository token is inserted into
these scripts by the EDB Repos 2.0 site. In the examples, it's shown as XXXXXXXXXXXXXXXX .

On each provisioned host, you either run the automatic repository installation script or use the manual installation steps. The automatic script looks like this:

curl -1sLf 'https://downloads.enterprisedb.com/XXXXXXXXXXXXXXXX/enterprise/setup.rpm.sh' | sudo -E bash

The manual installation steps look like this:

dnf install yum-utils
rpm --import 'https://downloads.enterprisedb.com/XXXXXXXXXXXXXXXX/enterprise/gpg.E71EB0829F1EF813.key'
curl -1sLf 'https://downloads.enterprisedb.com/XXXXXXXXXXXXXXXX/enterprise/config.rpm.txt?distro=el&codename=9' >
/tmp/enterprise.repo
dnf config-manager --add-repo '/tmp/enterprise.repo'
dnf -q makecache -y --disablerepo='*' --enablerepo='enterprisedb-enterprise'

2: Install Postgres

For step 2, run the command to install the packages:

sudo dnf -y install edb-as16-server

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 71

https://www.enterprisedb.com/repos
https://www.enterprisedb.com/repos

8.1.1.3 Step 3 - Configuring PGD repositories

Configuring PGD repositories

To install and run PGD requires that you configure repositories so that the system can download and install the appropriate packages.

Perform the following operations on each host. For the purposes of this exercise, each host is a standard data node, but the procedure would be the same for other
node types, such as witness or subscriber-only nodes.

Use your EDB account.

Obtain your EDB repository token from the EDB Repos 2.0 page.

Set environment variables.

Set the EDB_SUBSCRIPTION_TOKEN environment variable to the repository token:

export EDB_SUBSCRIPTION_TOKEN=<your-repo-token>

Configure the repository.

Run the automated installer to install the repositories:

Red HatRed Hat

curl -1sLf
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.rpm.sh" |
sudo -E bash

Ubuntu/DebianUbuntu/Debian

curl -1sLf
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.deb.sh" |
sudo -E bash

Worked example

Use your EDB account

You need an EDB account to install Postgres Distributed.

Use your EDB account to sign in to the EDB Repos 2.0 page, where you can obtain your repo token.

On your first visit to this page, select Request AccessRequest Access to generate your repo token.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 72

https://www.enterprisedb.com/docs/pgd/5/deploy-config/node_management/node_types
https://www.enterprisedb.com/repos-downloads
https://www.enterprisedb.com/repos-downloads

Select Copy TokenCopy Token to copy the token to your clipboard, and store the token safely.

Set environment variables

Set the EDB_SUBSCRIPTION_TOKEN environment variable to the value of your EDB repo token, obtained in the EDB account step.

export EDB_SUBSCRIPTION_TOKEN=<your-repo-token>

You can add this to your .bashrc script or similar shell profile to ensure it's always set.

NoteNote

Your preferred platform may support storing this variable as a secret, which can appear as an environment variable. If this is the case, add it to your
platform's secret manager, and don't add the setting to .bashrc .

Configure the repository

All the software you need is available from the EDB Postgres Distributed package repository. You have the option to download and run a script to configure the EDB
Postgres Distributed repository. You can also download, inspect, and then run that same script.

The following instructions also include the essential steps that the scripts take for any user wanting to manually run the installation process or to automate it.

RHEL/Other RHEL-based

You can autoinstall with automated OS detection:

curl -1sLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.rpm.sh" | sudo
-E bash

If you want to inspect the script that's generated for you, run:

curl -1sLfO "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.rpm.sh"

Then inspect the resulting setup.rpm.sh file. When you're ready to proceed, run:

sudo -E bash setup.rpm.sh

If you want to perform all steps manually or use your own preferred deployment mechanism, you can use the following example as a guide.

You will need to pass details of your Linux distribution and version. You may need to change the codename to match the version of RHEL you're using. This example

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 73

sets it for RHEL-compatible Linux version 9:

export DISTRO="el"
export CODENAME="9"

Now install the yum-utils package:

sudo dnf install -y yum-utils

The next step imports a GPG key for the repositories:

sudo rpm --import
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/gpg.B09F406230DA0084.key"

Now you can import the repository details, add them to the local configuration, and enable the repository.

curl -1sLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/config.rpm.txt?
distro=$DISTRO&codename=$CODENAME" > /tmp/enterprise.repo
sudo dnf config-manager --add-repo '/tmp/enterprise.repo'
sudo dnf -q makecache -y --disablerepo='*' --enablerepo='enterprisedb-postgres_distributed'

8.1.1.4 Step 4 - Installing the PGD software

Installing the PGD software

With the repositories configured, you can now install the Postgres Distributed software. You must perform these steps on each host before proceeding to the next
step.

Install the packages.Install the packages.

Install the PGD packages, which include a server-specific BDR package and generic PGD Proxy and CLI packages. (edb-bdr5-
<postgresversion> , edb-pgd5-proxy , and edb-pgd5-cli)

Ensure the Postgres database server has been initialized and started.Ensure the Postgres database server has been initialized and started.

Use systemctl status to check that the service is running.
If the service isn't running, initialize the database and start the service.

Configure the BDR extension.Configure the BDR extension.

Add the BDR extension ($libdir/bdr) at the start of the shared_preload_libraries setting in postgresql.conf .
Set the wal_level GUC variable to logical in postgresql.conf .
Turn on commit timestamp tracking by setting track_commit_timestamp to 'on' in postgresql.conf .
Increase the maximum worker processes to 16 or higher by setting max_worker_processes to '16' in postgresql.conf .

The The max_worker_processes value value

The max_worker_processes value is derived from the topology of the cluster, the number of peers, number of databases, and other
factors. To calculate the needed value, see Postgres configuration/settings. The value of 16 was calculated for the size of cluster being
deployed in this example. It must be increased for larger clusters.

Set a password on the EnterprisedDB/Postgres user.
Add rules to pg_hba.conf to allow nodes to connect to each other.

Ensure that these lines are present in pg_hba.conf :

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 74

https://www.enterprisedb.com/docs/pgd/5/deploy-config/postgres-configuration/#postgres-settings

host all all all md5
host replication all all md5

Add a .pgpass file to allow nodes to authenticate each other.
Configure a user with sufficient privileges to log in to the other nodes.
See The Password File in the Postgres documentation for more on the .pgpass file.

Restart the server.Restart the server.

Verify the restarted server is running with the modified settings and the BDR extension is available.

Create the replicated database.Create the replicated database.

Log in to the server's default database (edb for EDB Postgres Advanced Server, postgres for PGE and community Postgres).
Use CREATE DATABASE bdrdb to create the default PGD replicated database.
Log out and then log back in to bdrdb .
Use CREATE EXTENSION bdr to enable the BDR extension and PGD to run on that database.

The worked example that follows shows the steps for EDB Postgres Advanced Server in detail.

If you're installing PGD with EDB Postgres Extended Server or community Postgres, the steps are similar, but details such as package names and paths are different.
These differences are summarized in Installing PGD for EDB Postgres Extended Server and Installing PGD for Postgresql.

Worked example

Install the packages

The first step is to install the packages. Each Postgres package has an edb-bdr5-<postgresversion> package to go with it. For example, if you're installing
EDB Postgres Advanced Server (epas) version 16, you'd install edb-bdr5-epas16 .

There are two other packages to also install:

edb-pgd5-proxy for PGD Proxy
edb-pgd5-cli for the PGD command line tool

To install all of these packages on a RHEL or RHEL compatible Linux, run:

sudo dnf -y install edb-bdr5-epas16 edb-pgd5-proxy edb-pgd5-cli

Ensure the database is initialized and started

If the server wasn't initialized and started by the database's package initialization (or you're repeating the process), you need to initialize and start the server.

To see if the server is running, you can check the service. The service name for EDB Advanced Server is edb-as-16 , so run:

sudo systemctl status edb-as-16

If the server isn't running, the response is:

○ edb-as-16.service - EDB Postgres Advanced Server 16
 Loaded: loaded (/usr/lib/systemd/system/edb-as-16.service; disabled; preset: disabled)
 Active: inactive (dead)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 75

https://www.postgresql.org/docs/current/libpq-pgpass.html

Active: inactive (dead) tells you that you need to initialize and start the server.

You need to know the path to the setup script for your particular Postgres flavor.

For EDB Postgres Advanced Server, you can find this script in /usr/edb/as16/bin as edb-as-16-setup . Run this command with the initdb parameter
and pass an option to set the database to use UTF-8:

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as16/bin/edb-as-16-setup initdb

Once the database is initialized, start it so that you can continue configuring the BDR extension:

sudo systemctl start edb-as-16

Configure the BDR extension

Installing EDB Postgres Advanced Server creates a system user enterprisedb with admin capabilities when connected to the database. You'll use this user to
configure the BDR extension.

Preload the BDR library

You need to preload the BDR library with other libraries. EDB Postgres Advanced Server has a number of libraries already preloaded, so you have to prefix the
existing list with the BDR library.

echo -e "shared_preload_libraries = '\$libdir/bdr,\$libdir/dbms_pipe,\$libdir/edb_gen,\$libdir/dbms_aq'" | sudo -
u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf >/dev/null

TipTip

This command format (echo ... | sudo ... tee -a ...) appends the echoed string to the end of the postgresql.conf file, which is
owned by another user.

Set the wal_level

The BDR extension needs to set the server to perform logical replication. Do this by setting wal_level to logical :

echo -e "wal_level = 'logical'" | sudo -u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf >/dev/null

Enable commit timestamp tracking

The BDR extension also needs the commit timestamp tracking enabled:

echo -e "track_commit_timestamp = 'on'" | sudo -u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf
>/dev/null

Increase max_worker_processes

To communicate between multiple nodes, Postgres Distributed nodes run more worker processes than usual. The default limit (8) is too low even for a small cluster.

The max_worker_processes value is derived from the topology of the cluster, the number of peers, number of databases, and other factors. To calculate the
needed value, see Postgres configuration/settings.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 76

This example, with a 3-node cluster, uses the value of 16.

Increase the maximum number of worker processes to 16:

echo -e "max_worker_processes = '16'" | sudo -u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf
>/dev/null

This value must be increased for larger clusters.

Add a password to the Postgres enterprisedb user

To allow connections between nodes, a password needs to be set on the Postgres enterprisedb user. This example uses the password secret . Select a different
password for your deployments. You will need this password to Enable authentication between nodes.

sudo -u enterprisedb psql edb -c "ALTER USER enterprisedb WITH PASSWORD 'secret'"

Enable inter-node authentication in pg_hba.conf

Out of the box, Postgres allows local authentication and connections with the database but not external network connections. To enable this, edit pg_hba.conf
and add appropriate rules, including rules for the replication users. To simplify the process, use this command:

echo -e "host all all all md5\nhost replication all all md5" | sudo tee -a /var/lib/edb/as16/data/pg_hba.conf

The command appends the following to pg_hba.conf :

host all all all md5
host replication all all md5

These commands enable the nodes to replicate.

Enable authentication between nodes

As part of the process of connecting nodes for replication, PGD logs into other nodes. It performs that login as the user that Postgres is running under. For EDB
Postgres Advanced server, this is the enterprisedb user. That user needs credentials to log into the other nodes. Supply these credentials using the .pgpass file,
which needs to reside in the user's home directory. The home directory for enterprisedb is /var/lib/edb .

Run this command to create the file:

echo -e "*:*:*:enterprisedb:secret" | sudo -u enterprisedb tee /var/lib/edb/.pgpass; sudo chmod 0600
/var/lib/edb/.pgpass

You can read more about the .pgpass file in The Password File in the PostgreSQL documentation.

Restart the server

After all these configuration changes, we recommend that you restart the server with:

sudo systemctl restart edb-as-16

Check the extension has been installed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 77

https://www.postgresql.org/docs/current/libpq-pgpass.html

At this point, it's worth checking whether the extension is actually available and the configuration was correctly loaded. You can query the
pg_available_extensions table for the BDR extension like this:

sudo -u enterprisedb psql edb -c "select * from pg_available_extensions where name like 'bdr'"

This command returns an entry for the extension and its version:

 name | default_version | installed_version | comment
------+-----------------+-------------------+---
 bdr | 5.3.0 | | Bi-Directional Replication for PostgreSQL

You can also confirm the other server settings using this command:

sudo -u enterprisedb psql edb -c "show all" | grep -e wal_level -e track_commit_timestamp -e max_worker_processes

Create the replicated database

The server is now prepared for PGD. You need to next create a database named bdrdb and install the BDR extension when logged into it:

sudo -u enterprisedb psql edb -c "CREATE DATABASE bdrdb"
sudo -u enterprisedb psql bdrdb -c "CREATE EXTENSION bdr"

Finally, test the connection by logging in to the server.

sudo -u enterprisedb psql bdrdb

You're connected to the server. Execute the command "\dx" to list extensions installed:

bdrdb=# \dx
 List of installed extensions
 Name | Version | Schema | Description
------------------+---------+------------+--
 bdr | 5.3.0 | pg_catalog | Bi-Directional Replication for PostgreSQL
 edb_dblink_libpq | 1.0 | pg_catalog | EnterpriseDB Foreign Data Wrapper for PostgreSQL
 edb_dblink_oci | 1.0 | pg_catalog | EnterpriseDB Foreign Data Wrapper for Oracle
 edbspl | 1.0 | pg_catalog | EDB-SPL procedural language
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(5 rows)

Notice that the BDR extension is listed in the table, showing that it's installed.

Summaries

Installing PGD for EDB Postgres Advanced Server

For your convenience, here's a summary of the commands used in this example.

sudo dnf -y install edb-bdr5-epas16 edb-pgd5-proxy edb-pgd5-cli
sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as16/bin/edb-as-16-setup initdb
sudo systemctl start edb-as-16
echo -e "shared_preload_libraries = '\$libdir/bdr,\$libdir/dbms_pipe,\$libdir/edb_gen,\$libdir/dbms_aq'" | sudo -
u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf >/dev/null

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 78

echo -e "wal_level = 'logical'" | sudo -u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf >/dev/null
echo -e "track_commit_timestamp = 'on'" | sudo -u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf
>/dev/null
echo -e "max_worker_processes = '16'" | sudo -u enterprisedb tee -a /var/lib/edb/as16/data/postgresql.conf
>/dev/null
sudo -u enterprisedb psql edb -c "ALTER USER enterprisedb WITH PASSWORD 'secret'"
echo -e "host all all all md5\nhost replication all all md5" | sudo tee -a /var/lib/edb/as16/data/pg_hba.conf
>/dev/null
echo -e "*:*:*:enterprisedb:secret" | sudo -u enterprisedb tee /var/lib/edb/.pgpass >/dev/null; sudo chmod 0600
/var/lib/edb/.pgpass
sudo systemctl restart edb-as-16
sudo -u enterprisedb psql edb -c "CREATE DATABASE bdrdb"
sudo -u enterprisedb psql bdrdb -c "CREATE EXTENSION bdr"
sudo -u enterprisedb psql bdrdb

Installing PGD for EDB Postgres Extended Server

Installing PGD with EDB Postgres Extended Server has a number of differences from the EDB Postgres Advanced Server installation:

The BDR package to install is named edb-bdrV-pgextendedNN (where V is the PGD version and NN is the PGE version number).
Call a different setup utility: /usr/edb/pgeNN/bin/edb-pge-NN-setup .
The service name is edb-pge-NN .
The system user is postgres (not enterprisedb).
The home directory for the postgres user is /var/lib/pgqsl .
There are no preexisting libraries to add to shared_preload_libraries .

Summary: Installing PGD for EDB Postgres Extended Server 16

sudo dnf -y install edb-bdr5-pgextended16 edb-pgd5-proxy edb-pgd5-cli
sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge16/bin/edb-pge-16-setup ekend initdb
sudo systemctl start edb-pge-16
echo -e "shared_preload_libraries = '\$libdir/bdr'" | sudo -u postgres tee -a /var/lib/edb-
pge/16/data/postgresql.conf >/dev/null
echo -e "wal_level = 'logical'" | sudo -u postgres tee -a /var/lib/edb-pge/16/data/postgresql.conf >/dev/null
echo -e "track_commit_timestamp = 'on'" | sudo -u postgres tee -a /var/lib/edb-pge/16/data/postgresql.conf
>/dev/null
echo -e "max_worker_processes = '16'" | sudo -u postgres tee -a /var/lib/edb-pge/16/data/postgresql.conf
>/dev/null
sudo -u postgres psql postgres -c "ALTER USER postgres WITH PASSWORD 'secret'"
echo -e "host all all all md5\nhost replication all all md5" | sudo tee -a /var/lib/edb-pge/16/data/pg_hba.conf
>/dev/null
echo -e "*:*:*:postgres:secret" | sudo -u postgres tee /var/lib/pgsql/.pgpass >/dev/null; sudo chmod 0600
/var/lib/pgsql/.pgpass
sudo systemctl restart edb-pge-16
sudo -u postgres psql postgres -c "CREATE DATABASE bdrdb"
sudo -u postgres psql bdrdb -c "CREATE EXTENSION bdr"
sudo -u postgres psql bdrdb

Installing PGD for Postgresql

Installing PGD with PostgresSQL has a number of differences from the EDB Postgres Advanced Server installation:

The BDR package to install is named edb-bdrV-pgNN (where V is the PGD version and NN is the PostgreSQL version number).
Call a different setup utility: /usr/pgsql-NN/bin/postgresql-NN-setup .
The service name is postgresql-NN .
The system user is postgres (not enterprisedb).
The home directory for the postgres user is /var/lib/pgqsl .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 79

There are no preexisting libraries to add to shared_preload_libraries .

Summary: Installing PGD for Postgresql 16

sudo dnf -y install edb-bdr5-pg16 edb-pgd5-proxy edb-pgd5-cli
sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/pgsql-16/bin/postgresql-16-setup initdb
sudo systemctl start postgresql-16
echo -e "shared_preload_libraries = '\$libdir/bdr'" | sudo -u postgres tee -a
/var/lib/pgsql/16/data/postgresql.conf >/dev/null
echo -e "wal_level = 'logical'" | sudo -u postgres tee -a /var/lib/pgsql/16/data/postgresql.conf >/dev/null
echo -e "track_commit_timestamp = 'on'" | sudo -u postgres tee -a /var/lib/pgsql/16/data/postgresql.conf
>/dev/null
echo -e "max_worker_processes = '16'" | sudo -u postgres tee -a /var/lib/pgsql/16/data/postgresql.conf >/dev/null
sudo -u postgres psql postgres -c "ALTER USER postgres WITH PASSWORD 'secret'"
echo -e "host all all all md5\nhost replication all all md5" | sudo tee -a /var/lib/pgsql/16/data/pg_hba.conf
>/dev/null
echo -e "*:*:*:postgres:secret" | sudo -u postgres tee /var/lib/pgsql/.pgpass; sudo chmod 0600
/var/lib/pgsql/.pgpass
sudo systemctl restart postgresql-16
sudo -u postgres psql postgres -c "CREATE DATABASE bdrdb"
sudo -u postgres psql bdrdb -c "CREATE EXTENSION bdr"
sudo -u postgres psql bdrdb

8.1.1.5 Step 5 - Creating the PGD cluster

Creating the PGD cluster

Create connection strings for each nodeCreate connection strings for each node.
For each node, create a connection string that will allow PGD to perform replication.

The connection string is a key/value string that starts with a host= and the IP address of the host. (If you have resolvable named hosts, the name of the
host is used instead of the IP address.)

That's followed by the name of the database. In this case, use dbname=bdrdb , as a bdrdb database was created when installing the software.

We recommend you also add the port number of the server to your connection string as port=5444 for EDB Postgres Advanced Server and port=5432
for EDB Postgres Extended and community PostgreSQL.

Prepare the first node.Prepare the first node. To create the cluster, select and log in to the bdrdb database on any host's Postgres server.

Create the first node.Create the first node.
Run bdr.create_node and give the node a name and its connection string where other nodes can connect to it.

Create the top-level group. Create a top-level group for the cluster with bdr.create_node_group , giving it a single parameter: the name of the
top-level group.
Create a subgroup. Create a subgroup as a child of the top-level group with bdr.create_node_group , giving it two parameters: the name of the
subgroup and the name of the parent (and top-level) group. This process initializes the first node.

Add the second node.Add the second node.

Create the second node. Log in to another initialized node's bdrdb database. Run bdr.create_node and give the node a different name and its
connection string where other nodes can connect to it.
Join the second node to the cluster. Next, run bdr.join_node_group , passing two parameters: the connection string for the first node and the
name of the subgroup you want the node to join.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 80

Add the third node.Add the third node.

Create the third node. Log in to another initialized node's bdrdb database. Run bdr.create_node and give the node a different name and its
connection string where other nodes can connect to it.
Join the third node to the cluster. Next, run bdr.join_node_group , passing two parameters: the connection string for the first node and the
name of the subgroup you want the node to join.

Worked example

So far, this example has:

Created three hosts.
Installed a Postgres server on each host.
Installed Postgres Distributed on each host.
Configured the Postgres server to work with PGD on each host.

To create the cluster, you tell host-one's Postgres instance that it's a PGD node—node-one—and create PGD groups on that node. Then you tell host-two and host-
three's Postgres instances that they are PGD nodes—node-two and node-three—and that they must join a group on node-one.

Create connection strings for each node

Calculate the connection strings for each of the nodes in advance. Following are the connection strings for this 3-node example.

Name Node name Private IP Connection string

host-one node-one 192.168.254.166 host=host-one dbname=bdrdb port=5444

host-two node-two 192.168.254.247 host=host-two dbname=bdrdb port=5444

host-three node-three 192.167.254.135 host=host-three dbname=bdrdb port=5444

Preparing the first node

Log in to host-one's Postgres server.

ssh admin@host-one
sudo -iu enterprisedb psql bdrdb

Create the first node

Call the bdr.create_node function to create a node, passing it the node name and a connection string that other nodes can use to connect to it.

select bdr.create_node('node-one','host=host-one dbname=bdrdb port=5444');

Create the top-level group

Call the bdr.create_node_group function to create a top-level group for your PGD cluster. Passing a single string parameter creates the top-level group with
that name. This example creates a top-level group named pgd .

select bdr.create_node_group('pgd');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 81

Create a subgroup

Using subgroups to organize your nodes is preferred, as it allows services like PGD Proxy, which you'll configure later, to coordinate their operations. In a larger
PGD installation, multiple subgroups can exist. These subgroups provide organizational grouping that enables geographical mapping of clusters and localized
resilience. For that reason, this example creates a subgroup for the first nodes to enable simpler expansion and the use of PGD Proxy.

Call the bdr.create_node_group function again to create a subgroup of the top-level group. The subgroup name is the first parameter, and the parent group
is the second parameter. This example creates a subgroup dc1 as a child of pgd .

select bdr.create_node_group('dc1','pgd');

Adding the second node

Log in to host-two's Postgres server

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

Create the second node

Call the bdr.create_node function to create this node, passing it the node name and a connection string that other nodes can use to connect to it.

select bdr.create_node('node-two','host=host-two dbname=bdrdb port=5444');

Join the second node to the cluster

Using bdr.join_node_group , you can ask node-two to join node-one's dc1 group. The function takes as a first parameter the connection string of a node
already in the group and the group name as a second parameter.

select bdr.join_node_group('host=host-one dbname=bdrdb port=5444','dc1');

Add the third node

Log in to host-three's Postgres server.

ssh admin@host-three
sudo -iu enterprisedb psql bdrdb

Create the third node

Call the bdr.create_node function to create this node, passing it the node name and a connection string that other nodes can use to connect to it.

select bdr.create_node('node-three','host=host-three dbname=bdrdb port=5444');

Join the third node to the cluster

Using bdr.join_node_group , you can ask node-three to join node-one's dc1 group. The function takes as a first parameter the connection string of a node
already in the group and the group name as a second parameter.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 82

select bdr.join_node_group('host=host-one dbname=bdrdb port=5444','dc1');

A PGD cluster is now created.

8.1.1.6 Step 6 - Checking the cluster

Checking the cluster

With the cluster up and running, it's worthwhile to run some basic checks to see how effectively it's replicating.

The following example shows one quick way to do this, but you must ensure that any testing you perform is appropriate for your use case.

PreparationPreparation

Ensure the cluster is ready:
Log in to the database on host-one/node-one.
Run select bdr.wait_slot_confirm_lsn(NULL, NULL); .
When the query returns, the cluster is ready.

Create dataCreate data The simplest way to test that the cluster is replicating is to log in to one node, create a table, and populate it.

On node-one, create a table:

On node-one, populate the table:

On node-one, monitor performance:

On node-one, get a sum of the value column (for checking):

Check dataCheck data

Log in to node-two. Log in to the database on host-two/node-two.
On node-two, get a sum of the value column (for checking):

Compare with the result from node-one.
Log in to node-three. Log in to the database on host-three/node-three.
On node-three, get a sum of the value column (for checking):

Compare with the result from node-one and node-two.

Worked example

Preparation

CREATECREATE TABLETABLE quicktest (idid SERIAL PRIMARYPRIMARY KEYKEY, value INT);

INSERTINSERT INTOINTO quicktest (value) SELECTSELECT randomrandom()**10000 FROMFROM
generate_series(1,10000);

selectselect ** fromfrom bdr.node_replication_rates;

selectselect COUNT(**),SUM(value) fromfrom quicktest;

selectselect COUNT(**),SUM(value) fromfrom quicktest;

selectselect COUNT(**),SUM(value) fromfrom quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 83

Log in to host-one's Postgres server.

ssh admin@host-one
sudo -iu enterprisedb psql bdrdb

This is your connection to PGD's node-one.

Ensure the cluster is ready

To ensure that the cluster is ready to go, run:

select bdr.wait_slot_confirm_lsn(NULL, NULL)

This query blocks while the cluster is busy initializing and returns when the cluster is ready.

In another window, log in to host-two's Postgres server:

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

Create data

On node-one, create a table

Run:

On node-one, populate the table

INSERT INTO quicktest (value) SELECT random()*10000 FROM generate_series(1,10000);

This command generates a table of 10000 rows of random values.

On node-one, monitor performance

As soon as possible, run:

The command shows statistics about how quickly that data was replicated to the other two nodes:

bdrdb=# select * from bdr.node_replication_rates;
 peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size |
apply_rate | catchup_interv
al
--------------+-------------+-----------+------------+------------+------------------+-----------------+------------+-

 1954860017 | node-three | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes | 13682

CREATECREATE TABLETABLE quicktest (idid SERIAL PRIMARYPRIMARY KEYKEY, value INT);

selectselect ** fromfrom bdr.node_replication_rates;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 84

| 00:00:00
 2299992455 | node-two | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes | 13763
| 00:00:00
(2 rows)

And it's already replicated.

On node-one get a checksum

Run:

This command gets some values from the generated data:

 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Check data

Log in to host-two's Postgres server

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

This is your connection to PGD's node-two.

On node-two, get a checksum

Run:

This command gets node-two's values for the generated data:

 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Compare with the result from node-one

The values are identical.

You can repeat the process with node-three or generate new data on any node and see it replicate to the other nodes.

selectselect COUNT(**),SUM(value) fromfrom quicktest;

bdrdb==# selectselect COUNT(**),SUM(value) fromfrom quicktest;

selectselect COUNT(**),SUM(value) fromfrom quicktest;

bdrdb==# selectselect COUNT(**),SUM(value) fromfrom quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 85

Log in to host-three's Postgres server

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

This is your connection to PGD's node-three.

On node-three, get a checksum

Run:

This command gets node-three's values for the generated data:

 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Compare with the result from node-one and node-two

The values are identical.

8.1.1.7 Step 7 - Configure proxies

Configure proxies

PGD can use proxies to direct traffic to one of the cluster's nodes, selected automatically by the cluster. There are performance and availability reasons for using a
proxy:

Performance: By directing all traffic (in particular, write traffic) to one node, the node can resolve write conflicts locally and more efficiently.
Availability: When a node is taken down for maintenance or goes offline for other reasons, the proxy can direct new traffic to a new write leader that it
selects.

It's best practice to configure PGD Proxy for clusters to enable this behavior.

Configure the cluster for proxies

To set up a proxy, you need to first prepare the cluster and subgroup the proxies will be working with by:

Logging in and setting the enable_raft and enable_proxy_routing node group options to true for the subgroup. Use
bdr.alter_node_group_option , passing the subgroup name, option name, and new value as parameters.

Create as many uniquely named proxies as you plan to deploy using bdr.create_proxy and passing the new proxy name and the subgroup to attach it
to. The bdr.create_proxy does not create a proxy, but creates a space for a proxy to register itself with the cluster. The space contains configuration
values which can be modified later. Initially it is configured with default proxy options such as setting the listen_address to 0.0.0.0 .
Configure proxy routes to each node by setting route_dsn for each node in the subgroup. The route_dsn is the connection string that the proxy should use to
connect to that node. Use bdr.alter_node_option to set the route_dsn for each node in the subgroup.
Create a pgdproxy user on the cluster with a password or other authentication.

selectselect COUNT(**),SUM(value) fromfrom quicktest;

bdrdb==# selectselect COUNT(**),SUM(value) fromfrom quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 86

Configure each host as a proxy

Once the cluster is ready, you need to configure each host to run pgd-proxy:

Create a pgdproxy local user.
Create a .pgpass file for that user that allows the user to log into the cluster as pgdproxy.
Modify the systemd service file for pgdproxy to use the pgdproxy user.
Create a proxy config file for the host that lists the connection strings for all the nodes in the subgroup, specifies the name for the proxy to use when fetching
proxy options like listen_address and listen_port .
Install that file as /etc/edb/pgd-proxy/pgd-proxy-config.yml .
Restart the systemd service and check its status.
Log in to the proxy and verify its operation.

Further detail on all these steps is included in the worked example.

Worked example

Preparing for proxies

For proxies to function, the dc1 subgroup must enable Raft and routing.

Log in to any node in the cluster, using psql to connect to the bdrdb database as the enterprisedb user. Execute:

You can use the bdr.node_group_summary view to check the status of options previously set with bdr.alter_node_group_option() :

 node_group_name | enable_proxy_routing | enable_raft
-----------------+----------------------+-------------
 dc1 | t | t
(1 row)

bdrdb=#

Next, create a PGD proxy within the cluster using the bdr.create_proxy function. This function takes two parameters: the proxy's unique name and the group
you want it to be a proxy for.

In this example, you want a proxy on each host in the dc1 subgroup:

SELECT bdr.create_proxy('pgd-proxy-one','dc1');
SELECT bdr.create_proxy('pgd-proxy-two','dc1');
SELECT bdr.create_proxy('pgd-proxy-three','dc1');

You can use the bdr.proxy_config_summary view to check that the proxies were created:

SELECTSELECT bdr.alter_node_group_option('dc1', 'enable_raft', 'true');
SELECTSELECT bdr.alter_node_group_option('dc1', 'enable_proxy_routing', 'true');

SELECTSELECT node_group_name, enable_proxy_routing,
enable_raft
 FROMFROM bdr.node_group_summary
 WHEREWHERE parent_group_name ISIS NOTNOT NULLNULL;

SELECTSELECT proxy_name,
node_group_name
 FROMFROM bdr.proxy_config_summary;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 87

 proxy_name | node_group_name
-----------------+-----------------
 pgd-proxy-one | dc1
 pgd-proxy-two | dc1
 pgd-proxy-three | dc1

 bdrdb=#

Create a pgdproxy user on the database

Create a user named pgdproxy and give it a password. This example uses proxysecret .

On any node, log into the bdrdb database as enterprisedb/postgres.

CREATE USER pgdproxy PASSWORD 'proxysecret';
GRANT bdr_superuser TO pgdproxy;

Configure proxy routes to each node

Once a proxy has connected, it gets its dsn values (connection strings) from the cluster. The cluster needs to know the connection details that a proxy should use for
each node in the subgroup. This is done by setting the route_dsn option for each node to a connection string that the proxy can use to connect to that node.

Please note that when a proxy starts, it gets the initial dsn from the proxy's config file. The route_dsn value set in this step and in config file should match.

On any node, log into the bdrdb database as enterprisedb/postgres.

Note that the endpoints in this example specify port=5444 . This is necessary for EDB Postgres Advanced Server instances. For EDB Postgres Extended and
community PostgreSQL, you can omit this.

Create a pgdproxy user on each host

sudo adduser pgdproxy

This user needs credentials to connect to the server. Create a .pgpass file with the proxysecret password in it. Then lock down the .pgpass file so it's
accessible only by its owner.

echo -e "*:*:*:pgdproxy:proxysecret" | sudo tee /home/pgdproxy/.pgpass
sudo chown pgdproxy /home/pgdproxy/.pgpass
sudo chmod 0600 /home/pgdproxy/.pgpass

Configure the systemd service on each host

SELECTSELECT bdr.alter_node_option('host-one', 'route_dsn', 'host=host-one dbname=bdrdb port=5444
user=pgdproxy');
SELECTSELECT bdr.alter_node_option('host-two', 'route_dsn', 'host=host-two dbname=bdrdb port=5444
user=pgdproxy');
SELECTSELECT bdr.alter_node_option('host-three', 'route_dsn', 'host=host-three dbname=bdrdb port=5444
user=pgdproxy');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 88

Switch the service file from using root to using the pgdproxy user.

sudo sed -i s/root/pgdproxy/ /usr/lib/systemd/system/pgd-proxy.service

Reload the systemd daemon.

sudo systemctl daemon-reload

Create a proxy config file for each host

The proxy configuration file is slightly different for each host. It's a YAML file that contains a cluster object. The cluster object has three properties:

The name of the PGD cluster's top-level group (as name)
An array of endpoints of databases (as endpoints)
The proxy definition object with a name and endpoint (as proxy)

The first two properties are the same for all hosts:

cluster:
 name: pgd
 endpoints:
 - "host=host-one dbname=bdrdb port=5444 user=pgdproxy"
 - "host=host-two dbname=bdrdb port=5444 user=pgdproxy"
 - "host=host-three dbname=bdrdb port=5444 user=pgdproxy"

Remember that host-one, host-two, and host-three are the systems on which the cluster nodes (node-one, node-two, node-three) are running. You use the name of
the host, not the node, for the endpoint connection.

Again, note that the endpoints in this example specify port=5444 . This is necessary for EDB Postgres Advanced Server instances. For EDB Postgres Extended and
community PostgreSQL, you can set this to port=5432 .

The third property, proxy , has a name property. The name property is a name created with bdr.create_proxy earlier, and it's different on each host. A
proxy can't be on the same port as the Postgres server and, ideally, should be on a commonly used port different from direct connections, even when no Postgres
server is running on the host. Typically, you use port 6432 for PGD proxies.

 proxy:
 name: pgd-proxy-one

In this case, using localhost in the endpoint specifies that this proxy will listen on the host where the proxy is running.

Install a PGD proxy configuration on each host

For each host, create the /etc/edb/pgd-proxy directory:

sudo mkdir -p /etc/edb/pgd-proxy

Then, on each host, write the appropriate configuration to the pgd-proxy-config.yml file in the /etc/edb/pgd-proxy directory.

For this example, you can run this on host-one to create the file:

cat <<EOF | sudo tee /etc/edb/pgd-proxy/pgd-proxy-config.yml
cluster:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 89

 name: pgd
 endpoints:
 - "host=host-one dbname=bdrdb port=5444 user=pgdproxy"
 - "host=host-two dbname=bdrdb port=5444 user=pgdproxy"
 - "host=host-three dbname=bdrdb port=5444 user=pgdproxy"
 proxy:
 name: pgd-proxy-one
EOF

Restart the service

On each host where the proxy is being installed, restart the pgd-proxy service.

sudo systemctl restart pgd-proxy

Confirm it's running correctly:

sudo systemctl status pgd-proxy

When running, it shows Active: (running) in the opening details.

Test the proxy

At this point, connecting to the PGD Proxy port on any host in the cluster results in the connection being routed to the current write lead node.

For example, and assuming you've installed the proxy on all three hosts, then connecting to the proxy on host-three results in the connection being routed to node-
one.

This example passes connection details, using the -d flag of psql with the hostname for the proxy you just configured and the proxy port number:

sudo -iu enterprisedb psql -d "host=host-three dbname=bdrdb port=6432"

psql (16.1.0, server 16.1.0)
Type "help" for help.

bdrdb=#

Once connected to the proxy, you can query the server to find out which node the proxy connected you to:

 node_name

 node-one
(1 row)
bdrdb#

You should have connected to the current write leader of the subgroup. You can confirm that by querying which node is the write leader for the subgroup you're
connected to:

SELECTSELECT node_name FROMFROM bdr.local_node_summary;

SELECTSELECT node_group_name, write_lead FROMFROM
bdr.node_group_routing_summary;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 90

 node_group_name | write_lead
-----------------+------------
 dc1 | node-one
(1 row)

bdrdb=#

And the write_lead is node-one, too, so you confirm you're being proxy-connected to the write leader.

8.1.1.8 Step 8 - Using PGD CLI

Using PGD CLI

The PGD CLI command uses a configuration file to work out the hosts to connect to. There are options that allow you to override this to use alternative configuration
files or explicitly point at a server. But, by default, PGD CLI looks for a configuration file in preset locations.

The connection to the database is authenticated in the same way as other command line utilities, like the psql command, are authenticated.

Unlike other commands, PGD CLI doesn't interactively prompt for your password. Therefore, you must pass your password using one of the following methods:

Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password
Setting the password in the PGPASSWORD environment variable
Including the password in the connection string

We recommend the first option, as the other options don't scale well with multiple database clusters, or they compromise password confidentiality.

Configuring and connecting PGD CLI

Ensure PGD CLI is installed.
If PGD CLI was already installed, move to the next step.
For any system, repeat the configure repositories step on that system.
Then run the package installation command appropriate for that platform.

RHEL and derivatives: sudo dnf install edb-pgd5-cli
Debian, Ubuntu, and derivatives: sudo apt-get install edb-pgd5-cli

Create a configuration file.
This is a YAML file that specifies the cluster and endpoints for PGD CLI to use.

Install the configuration file.
Copy the YAML configuration file to a default config directory /etc/edb/pgd-cli/ as pgd-cli-config.yml .
Repeat this process on any system where you want to run PGD CLI.

Run pgd-cli.

Use PGD CLI to explore the cluster

Check the health of the cluster with the check-health command.
Show the nodes in the cluster with the show-nodes command.
Show the proxies in the cluster with the show-proxies command.
Show the groups in the cluster with the show-groups command.
Set a group option with the set-group-options command.
Switch write leader with the switchover command.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 91

https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/using_cli
https://www.postgresql.org/docs/current/libpq-pgpass.html

For more details about these commands, see the worked example that follows.

Also consult the PGD CLI documentation for details of other configuration options and a full command reference.

Worked example

Ensure PGD CLI is installed

In this worked example, you configure and use PGD CLI on host-one, where you've already installed Postgres and PGD. You don't need to install PGD CLI again.

Create a configuration file

The PGD CLI configuration file is similar to the PGD Proxy configuration file. It's a YAML file that contains a cluster object. This has two properties:

The name of the PGD cluster's top-level group (as name)
An array of endpoints of databases (as endpoints)

cluster:
 name: pgd
 endpoints:
 - host=host-one dbname=bdrdb port=5444
 - host=host-two dbname=bdrdb port=5444
 - host=host-three dbname=bdrdb port=5444

Note that the endpoints in this example specify port=5444 . This is necessary for EDB Postgres Advanced Server instances. For EDB Postgres Extended and
community PostgreSQL, you can omit this.

Install the configuration file

Create the PGD CLI configuration directory:

sudo mkdir -p /etc/edb/pgd-cli

Then, write the configuration to the pgd-cli-config.yml file in the /etc/edb/pgd-cli directory.

For this example, you can run this on host-one to create the file:

cat <<EOF | sudo tee /etc/edb/pgd-cli/pgd-cli-config.yml
cluster:
 name: pgd
 endpoints:
 - host=host-one dbname=bdrdb port=5444
 - host=host-two dbname=bdrdb port=5444
 - host=host-three dbname=bdrdb port=5444
EOF

You can repeat this process on any system where you need to use PGD CLI.

Run PGD CLI

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 92

https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/

With the configuration file in place, and logged in as the enterprisedb system user, you can run pgd-cli. For example, you can use the show-nodes command to
list the nodes in your cluster and their status:

pgd show-nodes

Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
node-one 2824718320 dc1 data ACTIVE ACTIVE Up 1
node-three 1954860017 dc1 data ACTIVE ACTIVE Up 3
node-two 2299992455 dc1 data ACTIVE ACTIVE Up 2

Using PGD CLI to explore the cluster

Once PGD CLI is configured, you can use it to get PGD-level views of the cluster.

Check the health of the cluster

The check-health command provides a quick way to view the health of the cluster:

pgd check-health

Check Status Message
----- ------ -------
ClockSkew Ok All BDR node pairs have clockskew within permissible limit
Connection Ok All BDR nodes are accessible
Raft Ok Raft Consensus is working correctly
Replslots Ok All BDR replication slots are working correctly
Version Ok All nodes are running same BDR versions

Show the nodes in the cluster

As previously seen, the show-nodes command lists the nodes in the cluster:

pgd show-nodes

Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
node-one 2824718320 dc1 data ACTIVE ACTIVE Up 1
node-three 1954860017 dc1 data ACTIVE ACTIVE Up 3
node-two 2299992455 dc1 data ACTIVE ACTIVE Up 2

This view shows the group the node is a member of and its current status. To find out what versions of PGD and Postgres are running on the nodes, use show-
version :

pgd show-version

Node BDR Version Postgres Version
---- ----------- ----------------
node-one 5.3.0 16.1.0
node-three 5.3.0 16.1.0
node-two 5.3.0 16.1.0

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 93

https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/command_ref/pgd_check-health
https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/command_ref/pgd_show-nodes

Show the proxies in the cluster

You can view the configured proxies, with their groups and ports, using show-proxies :

pgd show-proxies

Proxy Group Listen Addresses Listen Port
----- ----- ---------------- -----------
pgd-proxy-one dc1 [0.0.0.0] 6432
pgd-proxy-three dc1 [0.0.0.0] 6432
pgd-proxy-two dc1 [0.0.0.0] 6432

Show the groups in the cluster

Finally, the show-groups command for PGD CLI shows which groups are configured, and more:

pgd show-node_groups

Group Group ID Type Parent Group Location Raft Routing Write Leader
----- -------- ---- ------------ -------- ---- ------- ------------
pgd 1850374637 global true false
dc1 4269540889 data pgd true true node-one

This command shows:

The groups
Their types
Their parent group
The group's location
Whether Raft consensus is enabled
Whether the group is routing connections and, if it is, the node that's write leader for that

The location is descriptive metadata, and so far you haven't set it. You can use PGD CLI to do that.

Set a group option

You can set group options using PGD CLI, too, using the set-group-options command. This requires a --group-name flag to set the group for this change
to affect and an --option flag with the setting to change. If you wanted to set the dc1 group's location to London , you would run:

pgd set-group-options --group-name dc1 --option "location=London"

group options updated successfully

You can verify that with show-groups :

pgd show-node_groups

Group Group ID Type Parent Group Location Raft Routing Write Leader
----- -------- ---- ------------ -------- ---- ------- ------------
pgd 1850374637 global true false
dc1 4269540889 data pgd London true true node-one

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 94

https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/command_ref/pgd_show-proxies
https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/command_ref/pgd_show-groups
https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/command_ref/pgd_set-group-options

Switching write leader

If you need to change write leader in a group, to enable maintenance on a host, PGD CLI offers the switchover command. It takes a --group-name flag with
the group the node exists in and a --node-name flag with the name of the node to switch to. You can then run:

pgd switchover --group-name dc1 --node-name node-two

switchover is complete

And you can verify that with show-groups :

pgd show-groups

Group Group ID Type Parent Group Location Raft Routing Write Leader
----- -------- ---- ------------ -------- ---- ------- ------------
pgd 1850374637 global true false
dc1 4269540889 data pgd London true true node-two

More details on the available commands in PGD CLI are available in the PGD CLI command reference.

8.2 Deployment and management with TPA

TPA (Trusted Postgres Architect) is a standard automated way of installing PGD and Postgres on physical and virtual machines, both self-hosted and in the cloud
(with AWS EC2).

Get started with TPA and PGD quicklyGet started with TPA and PGD quickly

If you want to experiment with a local deployment as quickly as possible, you can deploying an EDB Postgres Distributed example cluster on Docker to
configure, provision, and deploy a PGD 5 Always-On cluster on Docker.

If deploying to the cloud is your aim, you can deploying an EDB Postgres Distributed example cluster on AWS to get a PGD 5 cluster on your own Amazon
account.

If you want to run on your own Linux systems or VMs, you can use also use TPA to deploy EDB Postgres Distributed directly to your own Linux hosts

This section of the manual covers how to use TPA to deploy and administer EDB Postgres Distributed.

Deploying with TPA works through the steps needed to:
Installing TPA
Using TPA to create a configuration
Deploying the configuration with TPA

The installing section provides an example cluster which will be used in future examples.

You can also perform a rolling major version upgrade with PGD administered by TPA.

8.2.1 Deploying PGD using TPA

The standard way of automatically deploying EDB Postgres Distributed in a self-managed setting is to use EDB's deployment tool: Trusted Postgres Architect (TPA).
This applies to physical and virtual machines, both self-hosted and in the cloud (EC2),

Get started with TPA and PGD quicklyGet started with TPA and PGD quickly

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 95

https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/command_ref/pgd_switchover
https://www.enterprisedb.com/docs/pgd/5/deploy-config/cli/command_ref/
https://www.enterprisedb.com/docs/pgd/5/deploy-config/deploy-tpa/upgrading_major_rolling.mdx
https://www.enterprisedb.com/docs/tpa/latest/

If you want to experiment with a local deployment as quickly as possible, you can deploy an EDB Postgres Distributed example cluster on Docker to
configure, provision, and deploy a PGD 5 Always-On cluster on Docker.

If deploying to the cloud is your aim, you can deploy an EDB Postgres Distributed example cluster on AWS to get a PGD 5 cluster on your own Amazon
account.

If you want to run on your own Linux systems or VMs, you can also use TPA to deploy EDB Postgres Distributed directly to your own Linux hosts.

Prerequisite: Install TPA

Before you can use TPA to deploy PGD, you must install TPA. Follow the installation instructions in the Trusted Postgres Architect documentation before continuing.

At the highest level, using TPA to deploy PGD involves the following steps:

 1: Use TPA to create a configuration for your PGD cluster.

 2: Provision, Deploy and Test your PGD cluster.

8.2.1.1 Configuring a PGD cluster with TPA

The tpaexec configure command generates a simple YAML configuration file to describe a cluster, based on the options you select. The configuration is
ready for immediate use, and you can modify it to better suit your needs. Editing the configuration file is the usual way to make any configuration changes to your
cluster both before and after it's created.

The syntax is:

tpaexec configure <cluster_dir> --architecture <architecture_name> [options]

The available configuration options include:

Flags Description

--architecture Required. Set to PGD-Always-ON for EDB Postgres Distributed deployments.

–-postgresql <version>
or
--edb-postgres-advanced
<version>
or
--edb-postgres-extended
<version>

Required. Specifies the distribution and version of Postgres to use. For more details, see Cluster configuration:
Postgres flavour and version.

--redwood or --no-redwood Required when --edb-postgres-advanced flag is present. Specifies whether Oracle database compatibility
features are desired.

--location-names l1 l2 l3 Required. Specifies the names of the locations to deploy PGD to.

--data-nodes-per-location
N

Specifies the number of data nodes per location. Default is 3.

--add-witness-node-per-
location

For an even number of data nodes per location, adds witness nodes to allow for local consensus. Enabled by default
for 2 data node locations.

--add-proxy-nodes-per-
location

Whether to separate PGD proxies from data nodes and how many to configure. By default one proxy is configured and
cohosted for each data node.

--pgd-proxy-routing
global|local

Whether PGD Proxy routing is handled on a global or local (per-location) basis.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 96

https://www.enterprisedb.com/docs/tpa/latest/INSTALL/
https://www.enterprisedb.com/docs/tpa/latest/tpaexec-configure/#postgres-flavour-and-version

--add-witness-only-
location loc Designates one of the cluster locations as witness-only (no data nodes are present in that location).

--enable-camo Sets up a CAMO pair in each location. Works only with 2 data nodes per location.

Flags Description

More configuration options are listed in the TPA documentation for PGD-Always-ON.

For example:

[tpa]$ tpaexec configure ~/clusters/speedy \
 --architecture PGD-Always-ON \
 --platform aws \
 --edb-postgres-advanced 16 \
 --redwood \
 --location-names eu-west-1 eu-north-1 eu-central-1 \
 --data-nodes-per-location 3 \
 --pgd-proxy-routing global

The first argument must be the cluster directory, for example, speedy or ~/clusters/speedy . (The cluster is named speedy in both cases.) We
recommend that you keep all your clusters in a common directory, for example, ~/clusters . The next argument must be --architecture to select an
architecture, followed by options.

The command creates a directory named ~/clusters/speedy and generates a configuration file named config.yml that follows the layout of the PGD-
Always-ON architecture. You can use the tpaexec configure --architecture PGD-Always-ON --help command to see the values that are
supported for the configuration options in this architecture.

In the example, the options select:

An AWS deployment (--platform aws)
EDB Postgres Advanced Server, version 16 and Oracle compatibility (--edb-postgres-advanced 16 and --redwood)
Three locations (--location-names eu-west-1 eu-north-1 eu-central-1)
Three data nodes at each location (--data-nodes-per-location 3)
Proxy routing policy of global (--pgd-proxy-routing global)

Common configuration options

Other configuration options include the following.

Owner

Every cluster must be directly traceable to a person responsible for the provisioned resources.

By default, a cluster is tagged as being owned by the login name of the user running tpaexec provision . If this name doesn't identify a person (for example,
postgres , ec2-user), you must specify --owner SomeId to set an identifiable owner.

You can use your initials, "Firstname Lastname", or any text that identifies you uniquely.

Platform options

The default value for --platform is aws , which is the platform supported by the PGD-Always-ON architecture.

Specify --region to specify any existing AWS region that you have access to and that allows you to create the required number of instances. The default region is
eu-west-1.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 97

https://www.enterprisedb.com/docs/tpa/latest/architecture-PGD-Always-ON/

Specify --instance-type with any valid instance type for AWS. The default is t3.micro.

Subnet selection

By default, each cluster is assigned a random /28 subnet under 10.33/16. However, depending on the architecture, there can be one or more subnets, and each
subnet can be anywhere between a /24 and a /29.

Specify --subnet to use a particular subnet, for example, --subnet 192.0.2.128/27 .

Disk space

Specify --root-volume-size to set the size of the root volume in GB, for example, --root-volume-size 64 . The default is 16GB. Depending on the
image used to create instances, there might be a minimum size for the root volume.

For architectures that support separate Postgres and Barman volumes:

Specify --postgres-volume-size to set the size of the Postgres volume in GB. The default is 16GB.

Specify --barman-volume-size to set the size of the Barman volume in GB. The default is 32GB.

Distribution

Specify --os or --distribution to specify the OS to use on the cluster's instances. The value is case sensitive.

The selected platform determines the distributions that are available and the one that's used by default. For more details, see tpaexec info
platforms/<platformname> .

In general, you can use Debian , RedHat , and Ubuntu to select TPA images that have Postgres and other software preinstalled (to reduce deployment times).
To use stock distribution images instead, append -minimal to the value, for example, --distribution Debian-minimal .

Repositories

When using TPA to deploy PDG 5 and later, TPA selects repositories from EDB Repos 2.0. All software is sourced from these repositories.

To use EDB Repos 2.0, you must use export EDB_SUBSCRIPTION_TOKEN=xxx before you run tpaexec. You can get your subscription token from the web
interface.

Optionally, use --edb-repositories repository … to specify EDB repositories in addition to the default repository to install on each instance.

Software versions

By default, TPA uses the latest major version of Postgres. Specify --postgres-version to install an earlier supported major version, or specify both version
and distribution using one of the flags described under Configure.

By default, TPA installs the latest version of every package, which is usually the desired behavior. However, in some testing scenarios, you might need to select
specific package versions. For example:

--postgres-package-version 10.4-2.pgdg90+1
--repmgr-package-version 4.0.5-1.pgdg90+1
--barman-package-version 2.4-1.pgdg90+1
--pglogical-package-version '2.2.0*'

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 98

https://www.enterprisedb.com/repos/
https://www.enterprisedb.com/repos-downloads
https://www.enterprisedb.com/docs/pgd/5/deploy-config/deploy-tpa/deploying/01-configuring#configure

--bdr-package-version '3.0.2*'
--pgbouncer-package-version '1.8*'

Specify --extra-packages or --extra-postgres-packages to install more packages. The former lists packages to install along with system packages.
The latter lists packages to install later along with Postgres packages. (If you mention packages that depend on Postgres in the former list, the installation fails
because Postgres isn't yet installed.) The arguments are passed on to the package manager for installation without any modifications.

The --extra-optional-packages option behaves like --extra-packages , but it's not an error if the named packages can't be installed.

Hostnames

By default, tpaexec configure randomly selects as many hostnames as it needs from a preapproved list of several dozen names, which is enough for most
clusters.

Specify --hostnames-from to select names from a different list, for example, if you need more names than are available in the supplied list. The file must
contain one hostname per line.

Specify --hostnames-pattern to restrict hostnames to those matching the egrep-syntax pattern. If you choose to do this, you must ensure that the pattern
matches only valid hostnames ([a-zA-Z0-9-]) and finds enough of them.

Locations

By default, tpaexec configure uses the names first, second, and so on for any locations used by the selected architecture.

Specify --location-names to provide more meaningful names for each location.

8.2.1.2 Provisioning, deploying, and testing

Provision

NoteNote

TPA now runs the provision command as part of the deploy command. The provision command is still available for use, but you don't need to
run it separately.

The tpaexec provision command creates instances and other resources required by the cluster. The details of the process depend on the architecture (for
example, PGD-Always-ON) and platform (for example, AWS) that you selected while configuring the cluster.

For example, given AWS access with the necessary privileges, TPA provisions EC2 instances, VPCs, subnets, routing tables, internet gateways, security groups, EBS
volumes, elastic IPs, and so on.

You can also provision existing servers by selecting the bare platform and providing connection details. Whether these are bare metal servers or those provisioned
separately on a cloud platform, they can be used as if they were created by TPA.

You aren't restricted to a single platform. You can spread your cluster out across some AWS instances in multiple regions and some on-premises servers or servers
in other data centres, as needed.

At the end of the provisioning stage, you will have the required number of instances with the basic operating system installed, which TPA can access using SSH (with
sudo to root).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 99

Deploy

The tpaexec deploy command installs and configures Postgres and other software on the provisioned servers. TPA can create the servers, but it doesn't matter
who created them so long as SSH and sudo access are available. This includes setting up replication, backups, and so on.

At the end of the deployment stage, EDB Postgres Distributed is up and running.

Test

The tpaexec test command executes various architecture and platform-specific tests against the deployed cluster to ensure that it's working as expected.

At the end of the testing stage, you have a fully functioning cluster.

For more information, see Trusted Postgres Architect.

8.3 Deploying and configuring PGD on Kubernetes

EDB Postgres Distributed for Kubernetes is a Kubernetes operator designed, developed, and supported by EDB. It covers the full lifecycle of highly available
Postgres database clusters with a multi-master architecture, using PGD replication. It's based on the open source CloudNativePG operator and provides additional
value, such as compatibility with Oracle using EDB Postgres Advanced Server, Transparent Data Encryption (TDE) using EDB Postgres Extended or Advanced Server,
and additional supported platforms including IBM Power and OpenShift.

This section covers how to deploy and configure EDB Postgres Distributed using the Kubernetes operator.

A Quickstart in the PGD for Kubernetes documentation works through the steps needed to:

Create a Kind/Minikube cluster.
Install Helm and the Helm chart for PGD for Kubernetes.
Create a simple configuration file for a PGD cluster.
Deploy a PGD cluster from that simple configuration file.

Installation and upgrade provides detailed instructions for installing and upgrading PGD for Kubernetes.

8.4 Deploying and configuring PGD on EDB BigAnimal

EDB BigAnimal is a fully managed database-as-a-service with built-in Oracle compatibility. It runs in your cloud account or BigAnimal's cloud account, where it's
operated by our Postgres experts. EDB BigAnimal makes it easy to set up, manage, and scale your databases. The addition of distributed high-availability support
powered by EDB Postgres Distributed (PGD) enables single- and multi-region Always On clusters.

This section covers how to work with EDB Postgres Distributed when deployed on BigAnimal.

Creating a distributed high-availability cluster in the BigAnimal documentation works through the steps needed to:
Prepare your cloud environment for a distributed high-availability cluster
Sign in to BigAnimal
Create a distributed high-availability cluster, including:

Creating and configuring a data group
Optionally creating and configuring a second data group in a different region

9 Application use

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 100

https://www.enterprisedb.com/docs/tpa/latest/
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/quickstart
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/installation_upgrade
https://www.enterprisedb.com/docs/biganimal/latest/getting_started/creating_a_cluster/creating_a_dha_cluster/

Developing an application with PGD is mostly the same as working with any PostgreSQL database. What's different, though, is that you need to be aware of how
your application interacts with replication. You need to know how PGD behaves with applications, the SQL that is and isn't replicated, how different nodes are
handled, and other important information.

Application behavior looks at how PGD replication appears to an application, such as:

The commands that are replicated
The commands that run locally
When row-level locks are acquired
How and where triggers fire
Large objects
Toast

DML and DDL replication shows the differences between the two classes of SQL statements and how PGD handles replicating them. It also looks at the
commands PGD doesn't replicate at all.

Nodes with differences examines how PGD works with configurations where there are differing table structures and schemas on replicated nodes. Also
covered is how to compare between such nodes with LiveCompare and how differences in PostgreSQL versions running on nodes can be handled.

Application rules offers some general rules for applications to avoid data anomalies.

Timing considerations shows how the asynchronous/synchronous replication might affect an application's view of data and notes functions to mitigate stale
reads.

Table access methods (TAMs) notes the TAMs available with PGD and how to enable them.

Feature compatibility shows which server features work with which commit scopes and which commit scopes can be daisychained together.

9.1 Application behavior

Much of PGD's replication behavior is transparent to applications. Understanding how it achieves that and the elements that aren't transparent is important to
successfully developing an application that works well with PGD.

Replication behavior

PGD supports replicating changes made on one node to other nodes.

PGD, by default, replicates all changes from INSERT, UPDATE, DELETE, and TRUNCATE operations from the source node to other nodes. Only the final changes are
sent, after all triggers and rules are processed. For example, INSERT ... ON CONFLICT UPDATE sends either an insert or an update, depending on what
occurred on the origin. If an update or delete affects zero rows, then no changes are sent.

You can replicate INSERT without any preconditions.

For updates and deletes to replicate on other nodes, PGD must be able to identify the unique rows affected. PGD requires that a table have either a PRIMARY KEY
defined, a UNIQUE constraint, or an explicit REPLICA IDENTITY defined on specific columns. If one of those isn't defined, a warning is generated, and later updates
or deletes are explicitly blocked. If REPLICA IDENTITY FULL is defined for a table, then a unique index isn't required. In that case, updates and deletes are allowed
and use the first non-unique index that's live, valid, not deferred, and doesn't have expressions or WHERE clauses. Otherwise, a sequential scan is used.

Truncate

You can use TRUNCATE even without a defined replication identity. Replication of TRUNCATE commands is supported, but take care when truncating groups of
tables connected by foreign keys. When replicating a truncate action, the subscriber truncates the same group of tables that was truncated on the origin, either
explicitly specified or implicitly collected by CASCADE, except in cases where replication sets are defined. See Replication sets for details and examples. This works
correctly if all affected tables are part of the same subscription. But if some tables to truncate on the subscriber have foreign-key links to tables that aren't part of
the same (or any) replication set, then applying the truncate action on the subscriber fails.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 101

Row-level locks

Row-level locks taken implicitly by INSERT, UPDATE, and DELETE commands are replicated as the changes are made. Table-level locks taken implicitly by INSERT,
UPDATE, DELETE, and TRUNCATE commands are also replicated. Explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions isn't
replicated, nor are advisory locks. Information stored by transactions running in SERIALIZABLE mode isn't replicated to other nodes. The transaction isolation level
of SERIALIAZABLE is supported, but transactions aren't serialized across nodes in the presence of concurrent transactions on multiple nodes.

If DML is executed on multiple nodes concurrently, then potential conflicts might occur if executing with asynchronous replication. You must either handle these or
avoid them. Various avoidance mechanisms are possible, discussed in Conflicts.

Sequences

Sequences need special handling, described in Sequences. This is because in a cluster, sequences must be global to avoid nodes creating conflicting values. Global
sequences are available with global locking to ensure integrity.

Binary objects

Binary data in BYTEA columns is replicated normally, allowing "blobs" of data up to 1 GB. Use of the PostgreSQL "large object" facility isn't supported in PGD.

Rules

Rules execute only on the origin node so aren't executed during apply, even if they're enabled for replicas.

Base tables only

Replication is possible only from base tables to base tables. That is, the tables on the source and target on the subscription side must be tables, not views,
materialized views, or foreign tables. Attempts to replicate tables other than base tables result in an error. DML changes that are made through updatable views are
resolved to base tables on the origin and then applied to the same base table name on the target.

Partitioned tables

PGD supports partitioned tables transparently, meaning that you can add a partitioned table to a replication set and changes that involve any of the partitions are
replicated downstream.

Triggers

By default, triggers execute only on the origin node. For example, an INSERT trigger executes on the origin node and is ignored when you apply the change on the
target node. You can specify for triggers to execute on both the origin node at execution time and on the target when it's replicated ("apply time") by using ALTER
TABLE ... ENABLE ALWAYS TRIGGER . Or, use the REPLICA option to execute only at apply time: ALTER TABLE ... ENABLE REPLICA TRIGGER .

Some types of trigger aren't executed on apply, even if they exist on a table and are currently enabled. Trigger types not executed are:

Statement-level triggers (FOR EACH STATEMENT)
Per-column UPDATE triggers (UPDATE OF column_name [, ...])

PGD replication apply uses the system-level default search_path. Replica triggers, stream triggers, and index expression functions can assume other search_path
settings that then fail when they execute on apply. To prevent this from occurring, use any of these techniques:

Resolve object references clearly using only the default search_path.
Always use fully qualified references to objects, for example, schema.objectname .
Set the search path for a function using ALTER FUNCTION ... SET search_path = ... for the functions affected.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 102

PGD assumes that there are no issues related to text or other collatable datatypes, that is, all collations in use are available on all nodes, and the default collation is
the same on all nodes. Replicating changes uses equality searches to locate Replica Identity values, so this does't have any effect except where unique indexes are
explicitly defined with nonmatching collation qualifiers. Row filters might be affected by differences in collations if collatable expressions were used.

Toast

PGD handling of very long "toasted" data in PostgreSQL is transparent to the user. The TOAST "chunkid" values likely differ between the same row on different
nodes, but that doesn't cause any problems.

Other restrictions

PGD can't work correctly if Replica Identity columns are marked as external.

PostgreSQL allows CHECK() constraints that contain volatile functions. Since PGD reexecutes CHECK() constraints on apply, any subsequent reexecution that
doesn't return the same result as before causes data divergence.

PGD doesn't restrict the use of foreign keys. Cascading FKs are allowed.

9.2 DML and DDL replication and nonreplication

The two major classes of SQL statement are DML and DDL.

DML is the data modification language and is concerned with the SQL statements that modify the data stored in tables. It includes UPDATE, DELETE, and
INSERT.

DDL is the data definition language and is concerned with the SQL statements that modify how the data is stored. It includes CREATE, ALTER, and DROP.

PGD handles each class differently.

DML replication

PGD doesn't replicate the DML statement. It replicates the changes caused by the DML statement. For example, an UPDATE that changed two rows replicates two
changes, whereas a DELETE that didn't remove any rows doesn't replicate anything. This means that the results of executing volatile statements are replicated,
ensuring there's no divergence between nodes as might occur with statement-based replication.

DDL replication

DDL replication works differently from DML. For DDL, PGD replicates the statement, which then executes on all nodes. So a DROP TABLE IF EXISTS might not
replicate anything on the local node, but the statement is still sent to other nodes for execution if DDL replication is enabled. For details, see DDL replication.

PGD works to ensure that intermixed DML and DDL statements work correctly, even in the same transaction.

Nonreplicated statements

Outside of those two classes are SQL commands that PGD, by design, doesn't replicate. None of the following user commands are replicated by PGD, so their effects
occur on the local/origin node only:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 103

Cursor operations (DECLARE, CLOSE, FETCH)
Execution commands (DO, CALL, PREPARE, EXECUTE, EXPLAIN)
Session management (DEALLOCATE, DISCARD, LOAD)
Parameter commands (SET, SHOW)
Constraint manipulation (SET CONSTRAINTS)
Locking commands (LOCK)
Table maintenance commands (VACUUM, ANALYZE, CLUSTER, REINDEX)
Async operations (NOTIFY, LISTEN, UNLISTEN)

Since the NOTIFY SQL command and the pg_notify() functions aren't replicated, notifications aren't reliable in case of failover. This means that notifications
can easily be lost at failover if a transaction is committed just when the server crashes. Applications running LISTEN might miss notifications in case of failover.

This is true in standard PostgreSQL replication, and PGD doesn't yet improve on this.

CAMO and Eager Replication options don't allow the NOTIFY SQL command or the pg_notify() function.

9.3 Nodes with differences

Replicating between nodes with differences

By default, DDL is sent to all nodes. You can control this behavior, as described in DDL replication, and you can use it to create differences between database
schemas across nodes. PGD is designed to allow replication to continue even with minor differences between nodes. These features are designed to allow
application schema migration without downtime or to allow logical standby nodes for reporting or testing.

Currently, replication requires the same table name on all nodes. A future feature might allow a mapping between different table names.

It's possible to replicate between tables with dissimilar partitioning definitions, such as a source that's a normal table replicating to a partitioned table, including
support for updates that change partitions on the target. It can be faster if the partitioning definition is the same on the source and target since dynamic partition
routing doesn't need to execute at apply time. For details, see Replication sets.

By default, all columns are replicated.

PGD replicates data columns based on the column name. If a column has the same name but a different data type, PGD attempts to cast from the source type to the
target type, if casts were defined that allow that.

PGD supports replicating between tables that have a different number of columns.

If the target has missing columns from the source, then PGD raises a target_column_missing conflict, for which the default conflict resolver is
ignore_if_null . This throws an error if a non-NULL value arrives. Alternatively, you can also configure a node with a conflict resolver of ignore . This setting

doesn't throw an error but silently ignores any additional columns.

If the target has additional columns not seen in the source record, then PGD raises a source_column_missing conflict, for which the default conflict resolver
is use_default_value . Replication proceeds if the additional columns have a default, either NULL (if nullable) or a default expression. If not, it throws an error
and halts replication.

Transform triggers can also be used on tables to provide default values or alter the incoming data in various ways before apply.

If the source and the target have different constraints, then replication is attempted, but it might fail if the rows from source can't be applied to the target. Row
filters can help here.

Replicating data from one schema to a more relaxed schema doesn't cause failures. Replicating data from a schema to a more restrictive schema can be a source of
potential failures. The right way to solve this is to place a constraint on the more relaxed side, so bad data can't be entered. That way, no bad data ever arrives by
replication, so it never fails the transform into the more restrictive schema. For example, if one schema has a column of type TEXT and another schema defines the
same column as XML, add a CHECK constraint onto the TEXT column to enforce that the text is XML.

You can define a table with different indexes on each node. By default, the index definitions are replicated. To specify how to create an index on only a subset of
nodes or just locally, see DDL replication .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 104

Storage parameters, such as fillfactor and toast_tuple_target , can differ between nodes for a table without problems. An exception to that behavior
is that the value of a table's storage parameter user_catalog_table must be identical on all nodes.

A table being replicated must be owned by the same user/role on each node. See Security and roles for details.

Roles can have different passwords for connection on each node, although by default changes to roles are replicated to each node. See DDL replication to specify
how to alter a role password on only a subset of nodes or locally.

Comparison between nodes with differences

LiveCompare is a tool for data comparison on a database against PGD and non-PGD nodes. It needs a minimum of two connections to compare against and reach a
final result.

Starting with LiveCompare 1.3, you can configure with all_bdr_nodes set. This setting saves you from clarifying all the relevant DSNs for each separate node in
the cluster. An EDB Postgres Distributed cluster has N amount of nodes with connection information, but it's only the initial and output connection that
LiveCompare 1.3 and later needs to complete its job. Setting logical_replication_mode states how all the nodes are communicating.

All the configuration is done in a .ini file named bdrLC.ini , for example. Find templates for this configuration file in /etc/2ndq-livecompare/ .

While LiveCompare executes, you see N+1 progress bars, N being the number of processes. Once all the tables are sourced, a time displays as the transactions per
second (tps) was measured. This mechanism continues to count the time, giving you an estimate and then a total execution time at the end.

This tool offers a lot of customization and filters, such as tables, schemas, and replication_sets. LiveCompare can use stop-start without losing context information,
so it can run at convenient times. After the comparison, a summary and a DML script are generated so you can review it. Apply the DML to fix any differences found.

Replicating between different release levels

The other difference between nodes that you might encounter is where there are different major versions of PostgreSQL on the nodes. PGD is designed to replicate
between different major release versions. This feature is designed to allow major version upgrades without downtime.

PGD is also designed to replicate between nodes that have different versions of PGD software. This feature is designed to allow version upgrades and maintenance
without downtime.

However, while it's possible to join a node with a major version in a cluster, you can't add a node with a minor version if the cluster uses a newer protocol version.
Doing so returns an error.

Both of these features might be affected by specific restrictions. See Release notes for any known incompatibilities.

9.4 General rules for applications

Background

PGD uses replica identity values to identify the rows to change. Applications can cause difficulties if they insert, delete, and then later reuse the same unique
identifiers. This is known as the ABA problem. PGD can't know whether the rows are the current row, the last row, or much older rows.

Similarly, since PGD uses table names to identify the table against which changes are replayed, a similar ABA problem exists with applications that create, drop,
and then later reuse the same object names.

Rules for applications

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 105

https://en.wikipedia.org/wiki/ABA_problem

These issues give rise to some simple rules for applications to follow:

Use unique identifiers for rows (INSERT).
Avoid modifying unique identifiers (UPDATE).
Avoid reusing deleted unique identifiers.
Avoid reusing dropped object names.

In the general case, breaking those rules can lead to data anomalies and divergence. Applications can break those rules as long as certain conditions are met.
However, use caution: while anomalies are unlikely, they aren't impossible. For example, you can reuse a row value as long as the DELETE was replayed on all
nodes, including down nodes. This might normally occur in less than a second but can take days if a severe issue occurred on one node that prevented it from
restarting correctly.

9.5 Timing considerations and synchronous replication

Being asynchronous by default, peer nodes might lag behind. This behavior makes it possible for a client connected to multiple PGD nodes or switching between
them to read stale data.

A queue wait function is provided for clients or proxies to prevent such stale reads.

The synchronous replication features of Postgres are available to PGD as well. In addition, PGD provides multiple variants for more synchronous replication. See
Durability and performance options for an overview and comparison of all variants available and their different modes.

9.6 Use of table access methods (TAMs) in PGD

PGD 5.0 supports two table access methods (TAMs) released with EDB Postgres 15.0. These two TAMs were certified and are allowed in PGD 5.0:

Auto cluster
Ref data

Any other TAM is restricted until certified by EDB. If you're planning to use any of the TAMs on a table, you need to configure that TAM on each participating node in
the PGD cluster. To configure auto cluster or ref data TAM, on each node:

1. Update postgresql.conf to specify TAMs autocluster or refdata for the shared_preload_libraries parameter.
2. Restart the server and execute CREATE EXTENSION autocluster; or CREATE EXTENSION refdata; .

After you create the extension, you can use TAM to create a table using CREATE TABLE test USING autocluster; or CREATE TABLE test USING
refdata; . These commands replicate to all the PGD nodes. For more information on these table access methods, see CREATE TABLE .

9.7 Feature compatibility

Server feature/commit scope interoperability

Not all server features work with all commit scopes. This table shows the ones that interoperate.

AsyncAsync
(default)(default)

ParallelParallel
ApplyApply

TransactionTransaction
StreamingStreaming

SingleSingle
DecodingDecoding

WorkerWorker

Group Commit ⛔ ︎ ❌

❌

❗ ️
✅

CAMO ⛔ ︎ ✅ ❌ ❌

Lag Control ✅ ✅ ✅ ✅

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 106

https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_sql/36_create_table/

Synchronous Commit
⛔ ︎ ✅ ✅ ✅

AsyncAsync
(default)(default)

ParallelParallel
ApplyApply

TransactionTransaction
StreamingStreaming

SingleSingle
DecodingDecoding

WorkerWorker

LegendLegend: ⛔ ︎ Not applicable ❌ Does not interoperate ✅ Interoperates

Notes

⛔ ︎ : The Async column in the table represents PGD without a synchronous commit scope in use. Lag Control isn't a synchronous commit scope.
It's a controlling commit scope and is therefore available with asynchronous operations.

❗ ️ : Attempting to use Group Commit and Transaction Streaming presents a warning. The warning suggests that you disable transaction
streaming, and the transaction appears to take place. In the background, Group Commit was disabled to allow the transaction to occur.

Commit scope/commit scope interoperability

Although you can't mix commit scopes, you can combine rules with an AND operator. This table shows where commit scopes can be combined.

GroupGroup
CommitCommit

CAMOCAMO LagLag
ControlControl

SynchronousSynchronous
CommitCommit

Group Commit ⛔ ︎ ❌ ✅ ✅

CAMO ❌ ⛔ ︎ ✅ ❌

Lag Control ✅ ✅ ⛔ ︎ ✅

Synchronous Commit ✅ ❌ ✅ ⛔ ︎

LegendLegend: ⛔ ︎ Not applicable ❌ Does not combine ✅ Combines

Notes

Each commit scope implicitly works with itself.

10 Node management

All data nodes in a PGD cluster are members of one or more groups. By default, all data nodes are members of the top-level group, which spans all data nodes in the
PGD cluster. Nodes can also belong to subgroups that can be configured to reflect logical or geographical organization of the PGD cluster.

You can manage nodes and groups using the various options available with nodes and subgroups.

Node types covers the kinds of node that can exist in PGD clusters.

Groups and subgroups goes into more detail on how groups and subgroups work in PGD

Creating and joining groups looks at how new PGD groups can be created and how to join PGD nodes to them.

Witness nodes looks at a special class of PGD node, dedicated to establishing consensus in a group.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 107

Logical standby nodes shows how to efficiently keep a node on standby synchronized and ready to step in as a primary in the case of failure.

Subscriber-only nodes and groups looks at how subscriber-only nodes work and how they are configured.

Viewing topology details commands and SQL queries that can show the structure of a PGD clusters nodes and groups.

Removing nodes and groups shows the process to follow to safely remove a node from a group or a group from a cluster.

Heterogeneous clusters looks at how your PGD cluster can interoperate with PGD nodes from earlier editions of PGD.

Connection DSNs introduces the DSNs or connection strings needed to connect directly to a node in a PGD cluster. It also covers how to use SSL/TLS
certificates to provide authentication and encryption between servers and between clients.

Decoding worker covers a feature of PGD that allows groups of nodes to reduce CPU overhead due to replication.

Replication slots examines how the Postgres replication slots are consumed when PGD is operating.

Node recovery details the steps needed to bring a node back into service after a failure or scheduled downtime and the impact it has on the cluster as it
returns.

Maintenance commands through proxies shows how to send maintenance commands to nodes that you can't directly access, such as those behind a proxy.

10.1 Node types

Data nodes

A data node in PGD is a node which runs a Postgres instance. It replicates data to all other data nodes. It also participates in the cluster wide Raft decision making
around locking and leadership. It will be the member of one or more groups and by default will be a member of the "top level" group which spans all data nodes in
the cluster.

Witness nodes

A witness node behaves like a data node in that it participates in the cluster wide Raft decision making around locking and leadership. It does not replicate or store
data though. The purpose of a witness node is to be available to ensure a majority can be achieved when the cluster seeks a consensus. The Witness nodes section
has more details.

Logical standby nodes

Logical standby nodes are nodes which recieve the logical data changes from another node and replicate them locally. They can be used to replace the node they are
replicating, if that node should become unavailable, with some caveats. See Logical standby nodes for more details.

Subscriber-only nodes

A subscriber-only node is a data node which, as the name suggests, only subscribes to changes in the cluster but does not replicate changes to other nodes.
Subscriber-only nodes can be used as read-only nodes for applications. Subscriber-only nodes are created by taking a data node and adding it to a subscriber-only
group. See Subscriber-only nodes and groups for more details.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 108

10.2 Groups and subgroups

Groups

A PGD cluster's nodes are gathered in groups. A "top level" group always exists and is the group to which all data nodes belong to automatically. The "top level"
group can also be the direct parent of sub-groups.

Sub-groups

A group can also contain zero or more subgroups. Subgroups can be used to represent data centers or locations allowing commit scopes to refer to nodes in a
particular region as a whole. PGD Proxy can also make use of subgroups to delineate nodes available to be write leader.

The node_group_type value specifies the type when the subgroup is created. Some sub-group types change the behavior of the nodes within the group. For
example, a subscriber-only sub-group will make all the nodes within the group into subscriber-only nodes.

10.3 Creating and joining PGD groups

Creating and joining PGD groups

For PGD, every node must connect to every other node. To make configuration easy, when a new node joins, it configures all existing nodes to connect to it. For this
reason, every node, including the first PGD node created, must know the PostgreSQL connection string that other nodes can use to connect to it. This connection
string is sometimes referred to as a data source name (DSN).

Both formats of connection string are supported. So you can use either key-value format, like host=myhost port=5432 dbname=mydb , or URI format, like
postgresql://myhost:5432/mydb .

The SQL function bdr.create_node_group() creates the PGD group from the local node. Doing so activates PGD on that node and allows other nodes to join
the PGD group, which consists of only one node at that point. At the time of creation, you must specify the connection string for other nodes to use to connect to this
node.

Once the node group is created, every further node can join the PGD group using the bdr.join_node_group() function.

Alternatively, use the command line utility bdr_init_physical to create a new node, using pg_basebackup . If using pg_basebackup , the bdr_init_physical
utility can optionally specify the base backup of only the target database. The earlier behavior was to back up the entire database cluster. With this utility, the
activity completes faster and also uses less space because it excludes unwanted databases. If you specify only the target database, then the excluded databases get
cleaned up and removed on the new node.

When a new PGD node is joined to an existing PGD group or a node subscribes to an upstream peer, before replication can begin the system must copy the existing
data from the peer nodes to the local node. This copy must be carefully coordinated so that the local and remote data starts out identical. It's not enough to use
pg_dump yourself. The BDR extension provides built-in facilities for making this initial copy.

During the join process, the BDR extension synchronizes existing data using the provided source node as the basis and creates all metadata information needed for
establishing itself in the mesh topology in the PGD group. If the connection between the source and the new node disconnects during this initial copy, restart the
join process from the beginning.

The node that's joining the cluster must not contain any schema or data that already exists on databases in the PGD group. We recommend that the newly joining
database be empty except for the BDR extension. However, it's important that all required database users and roles are created.

Optionally, you can skip the schema synchronization using the synchronize_structure parameter of the bdr.join_node_group function. In this case,
the schema must already exist on the newly joining node.

We recommend that you select the source node that has the best connection (logically close, ideally with low latency and high bandwidth) as the source node for

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 109

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

joining. Doing so lowers the time needed for the join to finish.

Coordinate the join procedure using the Raft consensus algorithm, which requires most existing nodes to be online and reachable.

The logical join procedure (which uses the bdr.join_node_group function) performs data sync doing COPY operations and uses multiple writers (parallel
apply) if those are enabled.

Node join can execute concurrently with other node joins for the majority of the time taken to join. However, only one regular node at a time can be in either of the
states PROMOTE or PROMOTING. These states are typically fairly short if all other nodes are up and running. Otherwise the join is serialized at this stage. The
subscriber-only nodes are an exception to this rule, and they can be concurrently in PROMOTE and PROMOTING states as well, so their join process is fully
concurrent.

The join process uses only one node as the source, so it can be executed when nodes are down if a majority of nodes are available. This approach can cause a
complexity when running logical join. During logical join, the commit timestamp of rows copied from the source node is set to the latest commit timestamp on the
source node. Committed changes on nodes that have a commit timestamp earlier than this (because nodes are down or have significant lag) can conflict with
changes from other nodes. In this case, the newly joined node can be resolved differently to other nodes, causing a divergence. As a result, we recommend not
running a node join when significant replication lag exists between nodes. If this is necessary, run LiveCompare on the newly joined node to correct any data
divergence once all nodes are available and caught up.

pg_dump can fail when there's concurrent DDL activity on the source node because of cache-lookup failures. Since bdr.join_node_group uses pg_dump
internally, it might fail if there's concurrent DDL activity on the source node. Retrying the join works in that case.

10.4 Witness nodes

A witness node is a lightweight node which functions as a data node but which does not store or replicate data. It is used to allow a PGD cluster which uses Raft
consensus to have an odd number of voting nodes and therefore be able to achieve a majority when making decisions.

Witness Nodes within PGD groups or regions

One typical use of witness nodes is when a PGD group has two data nodes but resources are not available for the recommended three data nodes. In this case, a
witness node can be added to the PGD group to provide a third voting node to local Raft decision making. These decisions are primarily about who will be electing a
write leader for the proxies to use. With only two nodes, there could be no consensus over which data node could be write leader. With two data nodes and a witness,
there would be two candidates (the data nodes) and three voters (the data nodes and the witness) normally, and when a data node was down, there would still be
two voters able to select a write leader.

Witness Node outside regions

At a higher level, witness nodes can be used when there are multiple PGD groups mapped to different regions. For example with three data nodes per-region in two
regions, while running normally allows all six data nodes to participate in Raft decisions and obtaining DDL and DML global locks. Even when a data node is down,
there are sufficient data nodes to obtain a consensus. But if a network partition occurs and connectivity with the other region is lost, then there are now only three
nodes out of six available, which is not enough for a consensus. To avoid this scenario, a witness node in a third region can be deployed as part of the PGD cluster.
This witness node will allow a consensus to be achieved for most operational requirements of the PGD cluster while a region is unavailable.

10.5 Logical standby nodes

PGD allows you to create a logical standby node, also known as an offload node, a read-only node, receive-only node, or logical-read replicas. A master node can
have zero, one, or more logical standby nodes.

NoteNote

Logical standby nodes can be used in environments where network traffic between data centers is a concern. Otherwise, having more data nodes per
location is always preferred.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 110

Logical standby nodes are nodes that are held in a state of continual recovery, constantly updating until they're required. This behavior is similar to how Postgres
physical standbys operate while using logical replication for better performance. bdr.join_node_group has the pause_in_standby option to make the
node stay in halfway-joined as a logical standby node. Logical standby nodes receive changes but don't send changes made locally to other nodes.

Later, if you want, use bdr.promote_node to move the logical standby into a full, normal send/receive node.

A logical standby is sent data by one source node, defined by the DSN in bdr.join_node_group . Changes from all other nodes are received from this one
source node, minimizing bandwidth between multiple sites.

For high availability, if the source node dies, one logical standby can be promoted to a full node and replace the source in a failover operation similar to single-
master operation. If there are multiple logical standby nodes, the other nodes can't follow the new master, so the effectiveness of this technique is limited to one
logical standby.

In case a new standby is created from an existing PGD node, the needed replication slots for operation aren't synced to the new standby until at least 16 MB of LSN
has elapsed since the group slot was last advanced. In extreme cases, this might require a full 16 MB before slots are synced or created on the streaming replica. If a
failover or switchover occurs during this interval, the streaming standby can't be promoted to replace its PGD node, as the group slot and other dependent slots
don't exist yet.

The slot sync-up process on the standby solves this by invoking a function on the upstream. This function moves the group slot in the entire EDB Postgres
Distributed cluster by performing WAL switches and requesting all PGD peer nodes to replay their progress updates. This behavior causes the group slot to move
ahead in a short time span. This reduces the time required by the standby for the initial slot's sync-up, allowing for faster failover to it, if required.

On PostgreSQL, it's important to ensure that the slot's sync-up completes on the standby before promoting it. You can run the following query on the standby in the
target database to monitor and ensure that the slots synced up with the upstream. The promotion can go ahead when this query returns true .

You can also nudge the slot sync-up process in the entire PGD cluster by manually performing WAL switches and by requesting all PGD peer nodes to replay their
progress updates. This activity causes the group slot to move ahead in a short time and also hastens the slot sync-up activity on the standby. You can run the
following queries on any PGD peer node in the target database for this:

Use the monitoring query on the standby to check that these queries do help in faster slot sync-up on that standby.

A logical standby does allow write transactions. You can use this to great benefit, since it allows the logical standby to have additional indexes, longer retention
periods for data, intermediate work tables, LISTEN/NOTIFY, temp tables, materialized views, and other differences.

Any changes made locally to logical standbys that commit before the promotion aren't sent to other nodes. All transactions that commit after promotion are sent
onwards. If you perform writes to a logical standby, take care to quiesce the database before promotion.

You might make DDL changes to logical standby nodes, but they aren't replicated and they don't attempt to take global DDL locks. PGD functions that act similarly
to DDL also aren't replicated. See DDL replication. If you made incompatible DDL changes to a logical standby, then the database is a divergent node. Promotion of a
divergent node currently results in replication failing. As a result, plan to either ensure that a logical standby node is kept free of divergent changes if you intend to
use it as a standby, or ensure that divergent nodes are never promoted.

10.6 Subscriber-only nodes and groups

Subscriber-only nodes

As the name suggests, a subscriber-only node subscribes only to replication changes from other nodes in the cluster. However, no other nodes receive replication
changes from subscriber-only nodes. This is somewhat similar to logical standby nodes. But in contrast to logical standby, the subscriber-only nodes
are fully joined to the cluster. They can receive replication changes from all other nodes in the cluster and hence aren't affected by unavailability or parting of any
one node in the cluster.

SELECTSELECT truetrue FROMFROM pg_catalog.pg_replication_slots
WHEREWHERE
 slot_type == 'logical' ANDAND confirmed_flush_lsn ISIS NOTNOT
NULLNULL;

SELECTSELECT bdr.run_on_all_nodes('SELECT
pg_catalog.pg_switch_wal()');
SELECTSELECT bdr.run_on_all_nodes('SELECT
bdr.request_replay_progress_update()');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 111

A subscriber-only node is a fully joined PGD node and hence it receives all replicated DDLs and acts on those. It also uses Raft to consistently report its
status to all nodes in the cluster. The subscriber-only node doesn't have Raft voting rights and hence can't become a Raft leader or participate in the leader
election. Also, while it receives replicated DDLs, it doesn't participate in DDL or DML lock acquisition. In other words, a currently down subscriber-only node
doesn't stop a DML lock from being acquired.

The subscriber-only node forms the building block for PGD Tree topology. In this topology, a small number of fully active nodes are replicating changes in all
directions. A large number of subscriber-only nodes receive only changes but never send any changes to any other node in the cluster. This topology avoids
connection explosion due to a large number of nodes, yet provides an extremely large number of leaf nodes that you can use to consume the data.

Subscriber-only groups

To make use of subscriber-only nodes, first create a PGD group of type subscriber-only . Make it a subgroup of the group from which the member
nodes receive the replication changes. Once you create the subgroup, all nodes that intend to become subscriber-only nodes must join the subgroup. You can
create more than one subgroup of subscriber-only type, and they can have different parent groups.

Once a node successfully joins the subscriber-only subgroup, it becomes a subscriber-only node and starts receiving replication changes for the
parent group. Any changes made directly on the subscriber-only node aren't replicated.

See bdr.create_node_group to know how to create a subgroup of a specific type and belonging to a specific parent group.

NoteNote

Since a subscriber-only node doesn't replicate changes to any node in the cluster, it can't act as a source for syncing replication changes when a
node is parted from the cluster. But if the subscriber-only node already received and applied replication changes from the parted node that no
other node in the cluster currently has, then that causes inconsistency between the nodes.

For now, you can solve this by setting bdr.standby_slot_names and bdr.standby_slots_min_confirmed so that there's always a fully
active PGD node that's ahead of the subscriber-only nodes.

10.7 Viewing PGD topology

Listing PGD groups

Using pgd-cli

Use the pgd-cli show-groups command to list all groups in the PGD cluster:

pgd show-groups

 Group Group ID Type Parent Group Location Raft Routing Write Leader
 ----- -------- ---- ------------ -------- ---- ------- ------------
 bdrgroup 1360502012 global true false
 group_a 3618712053 data bdrgroup a true true bdr-a1
 group_b 402614658 data bdrgroup b true true bdr-b1
 group_c 2808307099 data bdrgroup c false false
 group_so 2123208041 subscriber-only bdrgroup c false false

Using SQL

The following simple query lists all the PGD node groups of which the current node is a member. It currently returns only one row from

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 112

bdr.local_node_summary .

You can display the configuration of each node group using a more complex query:

Listing nodes in a PGD group

Using pgd-cli

Use the show-nodes command to list all nodes in the PGD cluster:

pgd show-nodes

 Node Node ID Group Type Current State Target State Status Seq ID
 ---- ------- ----- ---- ------------- ------------ ------ ------
 bdr-a1 3136956818 group_a data ACTIVE ACTIVE Up 6
 bdr-a2 2133699692 group_a data ACTIVE ACTIVE Up 3
 logical-standby-a1 1140256918 group_a standby STANDBY STANDBY Up 9
 witness-a 3889635963 group_a witness ACTIVE ACTIVE Up 7
 bdr-b1 2380210996 group_b data ACTIVE ACTIVE Up 1
 bdr-b2 2244996162 group_b data ACTIVE ACTIVE Up 2
 logical-standby-b1 3541792022 group_b standby STANDBY STANDBY Up 10
 witness-b 661050297 group_b witness ACTIVE ACTIVE Up 5
 witness-c 1954444188 group_c witness ACTIVE ACTIVE Up 4
 subscriber-only-c1 2448841809 group_so subscriber-only ACTIVE ACTIVE Up 8

Use grep with the group name to filter the list to a specific group:

pgd show-nodes | grep group_b

 bdr-b1 2380210996 group_b data ACTIVE ACTIVE Up 1
 bdr-b2 2244996162 group_b data ACTIVE ACTIVE Up 2
 logical-standby-b1 3541792022 group_b standby STANDBY STANDBY Up 10
 witness-b 661050297 group_b witness ACTIVE ACTIVE Up 5

Using SQL

You can extract the list of all nodes in a given node group (such as mygroup) from the bdr.node_summary ` view. For example:

SELECTSELECT node_group_name
FROMFROM bdr.local_node_summary;

SELECTSELECT g.node_group_name
,
ns.pub_repsets
,
ns.sub_repsets
, g.node_group_default_repset ASAS
default_repset
, node_group_check_constraints ASAS check_constraints
FROMFROM bdr.local_node_summary ns
JOINJOIN bdr.node_group g USINGUSING
(node_group_name);

SELECTSELECT node_name ASAS name

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 113

The read-only state of a node, as shown in the current_state or in the target_state query columns, is indicated as STANDBY .

10.8 Removing nodes and groups

Removing a node from a PGD group

Since PGD is designed to recover from extended node outages, you must explicitly tell the system if you're removing a node permanently. If you permanently shut
down a node and don't tell the other nodes, then performance suffers and eventually the whole system stops working.

Node removal, also called parting, is done using the bdr.part_node() function. You must specify the node name (as passed during node creation) to remove a
node. You can call the bdr.part_node() function from any active node in the PGD group, including the node that you're removing.

Just like the join procedure, parting is done using Raft consensus and requires a majority of nodes to be online to work.

The parting process affects all nodes. The Raft leader manages a vote between nodes to see which node has the most recent data from the parting node. Then all
remaining nodes make a secondary, temporary connection to the most recent node to allow them to catch up any missing data.

A parted node still is known to PGD but doesn't consume resources. A node might be added again under the same name as a parted node. In rare cases, you might
want to clear all metadata of a parted node by using the function bdr.drop_node() .

Removing a whole PGD group

PGD groups usually map to locations. When a location is no longer being deployed, it's likely that the PGD group for the location also needs to be removed.

The PGD group that's being removed must be empty. Before you can remove the group, you must part all the nodes in the group.

10.9 Joining a heterogeneous cluster

PGD 4.0 node can join a EDB Postgres Distributed cluster running 3.7.x at a specific minimum maintenance release (such as 3.7.6) or a mix of 3.7 and 4.0 nodes.
This procedure is useful when you want to upgrade not just the PGD major version but also the underlying PostgreSQL major version. You can achieve this by joining
a 3.7 node running on PostgreSQL 12 or 13 to a EDB Postgres Distributed cluster running 3.6.x on PostgreSQL 11. The new node can also run on the same
PostgreSQL major release as all of the nodes in the existing cluster.

PGD ensures that the replication works correctly in all directions even when some nodes are running 3.6 on one PostgreSQL major release and other nodes are
running 3.7 on another PostgreSQL major release. However, we recommend that you quickly bring the cluster into a homogenous state by parting the older nodes
once enough new nodes join the cluster. Don't run any DDLs that might not be available on the older versions and vice versa.

A node joining with a different major PostgreSQL release can't use physical backup taken with bdr_init_physical , and the node must join using the logical
join method. Using this method is necessary because the major PostgreSQL releases aren't on-disk compatible with each other.

When a 3.7 node joins the cluster using a 3.6 node as a source, certain configurations, such as conflict resolution, aren't copied from the source node. The node
must be configured after it joins the cluster.

, node_seq_id ASAS
ord
, peer_state_name ASAS current_state
, peer_target_state_name ASAS target_state
, interface_connstr ASAS
dsn
FROMFROM
bdr.node_summary
WHEREWHERE node_group_name == 'mygroup';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 114

10.10 Connection DSNs and SSL (TLS)

Because nodes connect using libpq , the DSN of a node is a libpq connection string. As such, the connection string can contain any permitted libpq
connection parameter, including those for SSL. The DSN must work as the connection string from the client connecting to the node in which it's specified. An
example of such a set of parameters using a client certificate is:

With this setup, the files bdr_client.crt , bdr_client.key , and root.crt must be present in the data directory on each node, with the appropriate
permissions. For verify-full mode, the server's SSL certificate is checked to ensure that it's directly or indirectly signed with the root.crt certificate
authority and that the host name or address used in the connection matches the contents of the certificate. In the case of a name, this can match a subject's
alternative name or, if there are no such names in the certificate, the subject's common name (CN) field. Postgres doesn't currently support subject alternative
names for IP addresses, so if the connection is made by address rather than name, it must match the CN field.

The CN of the client certificate must be the name of the user making the PGD connection, which is usually the user postgres. Each node requires matching lines
permitting the connection in the pg_hba.conf file. For example:

Another setup might be to use SCRAM-SHA-256 passwords instead of client certificates and not verify the server identity as long as the certificate is properly
signed. Here the DSN parameters might be:

The corresponding pg_hba.conf lines are:

In such a scenario, the postgres user needs a .pgpass file containing the correct password.

10.11 Decoding worker

PGD provides an option to enable a decoding worker process that performs decoding once, no matter how many nodes are sent data. This option introduces a new
process, the WAL decoder, on each PGD node. One WAL sender process still exists for each connection, but these processes now just perform the task of sending
and receiving data. Taken together, these changes reduce the CPU overhead of larger PGD groups and also allow higher replication throughput since the WAL
sender process now spends more time on communication.

Enabling

enable_wal_decoder is an option for each PGD group, which is currently disabled by default. You can use bdr.alter_node_group_config() to
enable or disable the decoding worker for a PGD group.

When the decoding worker is enabled, PGD stores logical change record (LCR) files to allow buffering of changes between decoding and when all subscribing nodes
received data. LCR files are stored under the pg_logical directory in each local node's data directory. The number and size of the LCR files varies as replication
lag increases, so this process also needs monitoring. The LCRs that aren't required by any of the PGD nodes are cleaned periodically. The interval between two
consecutive cleanups is controlled by bdr.lcr_cleanup_interval , which defaults to 3 minutes. The cleanup is disabled when
bdr.lcr_cleanup_interval is 0.

sslmode=verify-full sslcert=bdr_client.crt
sslkey=bdr_client.key
sslrootcert=root.crt

hostssl all postgres 10.1.2.3/24
cert
hostssl replication postgres 10.1.2.3/24
cert

sslmode=verify-ca sslrootcert=root.crt

hostssl all postgres 10.1.2.3/24 scram-sha-
256
hostssl replication postgres 10.1.2.3/24 scram-sha-
256

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 115

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE
https://www.postgresql.org/docs/current/libpq-pgpass.html

Disabling

When disabled, logical decoding is performed by the WAL sender process for each node subscribing to each node. In this case, no LCR files are written.

Even though the decoding worker is enabled for a PGD group, following GUCs control the production and use of LCR per node. By default these are false . For
production and use of LCRs, enable the decoding worker for the PGD group and set these GUCs to true on each of the nodes in the PGD group.

bdr.enable_wal_decoder — When false , all WAL senders using LCRs restart to use WAL directly. When true along with the PGD group config, a
decoding worker process is started to produce LCR and WAL senders that use LCR.
bdr.receive_lcr — When true on the subscribing node, it requests WAL sender on the publisher node to use LCRs if available.

NotesNotes

As of now, a decoding worker decodes changes corresponding to the node where it's running. A logical standby is sent changes from all the nodes in the
PGD group through a single source. Hence a WAL sender serving a logical standby currently can't use LCRs.

A subscriber-only node receives changes from respective nodes directly. Hence a WAL sender serving a subscriber-only node can use LCRs.

Even though LCRs are produced, the corresponding WALs are still retained similar to the case when a decoding worker isn't enabled. In the future, it might
be possible to remove WAL corresponding the LCRs, if they aren't otherwise required.

LCR file names

For reference, the first 24 characters of an LCR file name are similar to those in a WAL file name. The first 8 characters of the name are currently all '0'. In the
future, they're expected to represent the TimeLineId similar to the first 8 characters of a WAL segment file name. The following sequence of 16 characters of the
name is similar to the WAL segment number, which is used to track LCR changes against the WAL stream.

However, logical changes are reordered according to the commit order of the transactions they belong to. Hence their placement in the LCR segments doesn't
match the placement of corresponding WAL in the WAL segments.

The set of the last 16 characters represents the subsegment number in an LCR segment. Each LCR file corresponds to a subsegment. LCR files are binary and
variable sized. The maximum size of an LCR file can be controlled by bdr.max_lcr_segment_file_size , which defaults to 1 GB.

10.12 Replication slots created by PGD

On a PGD master node, the following replication slots are created by PGD:

One group slot, named bdr_<database name>_<group name>
N-1 node slots, named bdr_<database name>_<group name>_<node name> , where N is the total number of PGD nodes in the cluster, including
direct logical standbys, if any

WarningWarning

Don't drop those slots. PGD creates and manages them and drops them when or if necessary.

On the other hand, you can create or drop replication slots required by software like Barman or logical replication using the appropriate commands for the software
without any effect on PGD. Don't start slot names used by other software with the prefix bdr_ .

For example, in a cluster composed of the three nodes alpha , beta , and gamma , where PGD is used to replicate the mydb database and the PGD group is
called mygroup :

Node alpha has three slots:
One group slot named bdr_mydb_mygroup
Two node slots named bdr_mydb_mygroup_beta and bdr_mydb_mygroup_gamma

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 116

Node beta has three slots:
One group slot named bdr_mydb_mygroup
Two node slots named bdr_mydb_mygroup_alpha and bdr_mydb_mygroup_gamma

Node gamma has three slots:
One group slot named bdr_mydb_mygroup
Two node slots named bdr_mydb_mygroup_alpha and bdr_mydb_mygroup_beta

Group replication slot

The group slot is an internal slot used by PGD primarily to track the oldest safe position that any node in the PGD group (including all logical standbys) has caught
up to, for any outbound replication from this node.

The group slot name is given by the function bdr.local_group_slot_name() .

The group slot can:

Join new nodes to the PGD group without having all existing nodes up and running (although the majority of nodes should be up). This process doesn't incur
data loss in case the node that was down during join starts replicating again.
Part nodes from the cluster consistently, even if some nodes haven't caught up fully with the parted node.
Hold back the freeze point to avoid missing some conflicts.
Keep the historical snapshot for timestamp-based snapshots.

The group slot is usually inactive and is fast forwarded only periodically in response to Raft progress messages from other nodes.

WarningWarning

Don't drop the group slot. Although usually inactive, it's still vital to the proper operation of the EDB Postgres Distributed cluster. If you drop it, then some
or all of the features can stop working or have incorrect outcomes.

Hashing long identifiers

The name of a replication slot, like any other PostgreSQL identifier, can't be longer than 63 bytes. PGD handles this by shortening the database name, the PGD
group name, and the name of the node in case the resulting slot name is too long for that limit. Shortening an identifier is carried out by replacing the final section
of the string with a hash of the string itself.

For example, consider a cluster that replicates a database named db20xxxxxxxxxxxxxxxx (20 bytes long) using a PGD group named
group20xxxxxxxxxxxxx (20 bytes long). The logical replication slot associated to node a30xxxxxxxxxxxxxxxxxxxxxxxxxxx (30 bytes long) is called

since 3597186 , be9cbd0 , and 7f304a2 are respectively the hashes of db20xxxxxxxxxxxxxxxx , group20xxxxxxxxxxxxx , and
a30xxxxxxxxxxxxxxxxxxxxxxxxxx .

bdr_db20xxxx3597186_group20xbe9cbd0_a30xxxxxxxxxxxxx7f304a2

10.13 Node restart and down node recovery

PGD is designed to recover from node restart or node disconnection. The disconnected node rejoins the group by reconnecting to each peer node and then
replicating any missing data from that node.

When a node starts up, each connection begins showing up in bdr.node_slots with bdr.node_slots.state = catchup and begins replicating
missing data. Catching up continues for a period of time that depends on the amount of missing data from each peer node and will likely increase over time,
depending on the server workload.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 117

If the amount of write activity on each node isn't uniform, the catchup period from nodes with more data can take significantly longer than other nodes. Eventually,
the slot state changes to bdr.node_slots.state = streaming .

Nodes that are offline for longer periods, such as hours or days, can begin to cause resource issues for various reasons. Don't plan on extended outages without
understanding the following issues.

Each node retains change information (using one replication slot for each peer node) so it can later replay changes to a temporarily unreachable node. If a peer
node remains offline indefinitely, this accumulated change information eventually causes the node to run out of storage space for PostgreSQL transaction logs
(WAL in pg_wal), and likely causes the database server to shut down with an error similar to this:

PANIC: could not write to file "pg_wal/xlogtemp.559": No space left on device

Or, it might report other out-of-disk related symptoms.

In addition, slots for offline nodes also hold back the catalog xmin, preventing vacuuming of catalog tables.

On EDB Postgres Extended Server and EDB Postgres Advanced Server, offline nodes also hold back freezing of data to prevent losing conflict-resolution data (see
Origin conflict detection).

Administrators must monitor for node outages (see monitoring) and make sure nodes have enough free disk space. If the workload is predictable, you might be able
to calculate how much space is used over time, allowing a prediction of the maximum time a node can be down before critical issues arise.

Don't manually remove replication slots created by PGD. If you do, the cluster becomes damaged and the node that was using the slot must be parted from the
cluster, as described in Replication slots created by PGD.

While a node is offline, the other nodes might not yet have received the same set of data from the offline node, so this might appear as a slight divergence across
nodes. The parting process corrects this imbalance across nodes. (Later versions might do this earlier.)

10.14 Maintenance commands through proxies

Maintenance and performance

As a general rule, you should never perform maintenance operations on a cluster's write leader. Maintenance operations such as VACUUM can be quite disruptive
to the smooth running of a busy server and often detrimental to workload performance. Therefore, it's best to run maintenance commands on any node in a group
that isn't the write leader. Generally, this requires you to connect directly and issue the maintenance commands on the non-write-leader nodes. But in some
situations, this isn't possible.

Maintenance and proxies

Proxies, by design, always connect to and send commands to the current write leader. This usually means that you must not connect by way of a proxy to perform
maintenance. PGD clusters nodes can present a direct connection for psql and PGD CLI clients that you can use to issue maintenance commands to the server on
those nodes. But there are environment in which the PGD cluster is deployed where a proxy is the only way to access the cluster.

For example, in BigAnimal, PGD clusters are locked down such that the only access to the database is through an instance of PGD Proxy. This configuration reduces
the footprint of the cluster and makes it more secure. However, it requires that you use a different way of sending maintenance requests to the cluster's nodes.

The technique outlined here is generally useful for despatching commands to specific nodes without being directly connected to that node's server.

Maintenance commands

The term maintenance commands refers to:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 118

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

VACUUM
Non-replicated DDL commands (which you might want to manually replicate)

A note on node names

The servers in the cluster are referred to by their PGD cluster node names. To get a list of node names in your cluster, use:

TipTip

For more details, see the bdr.node table.

This command lists just the node names. If you need to know the group they are a member of, use:

select node_name, node_group_name from bdr.node_summary;

TipTip

For more details, see the bdr.node_summary table.

Finding the write leader

If you're connected through the proxy, then you're connected to the write leader. Run select node_name from bdr.local_node_summary to see the
name of the node:

select node_name from bdr.local_node_summary;

 node_name

node-two
(1 row)

This is the node you do notnot want to run your maintenance tasks on.

select * from bdr.node_group_routing_summary;

 node_group_name | write_lead | previous_write_lead | read_nodes
-----------------+------------------+---------------------+-------------------------
 dc1 | node-two | node-one | {node-one,node-three}

Where the write_lead is the node determined earlier (node-two), you can also see the two read_nodes (node-one and node-three). It's on these nodes that
you can safely perform maintenance.

TipTip

You can perform that operation with a single query:

selectselect node_name fromfrom bdr.node;

selectselect read_nodes fromfrom bdr.node_group_routing_summary wherewhere write_lead == (selectselect node_name fromfrom
bdr.local_node_summary);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 119

Using bdr.run_on_nodes()

PGD has the ability to run specific commands on specific nodes using the bdr.run_on_nodes() function. This function takes two parameters: an array of node
names and the command you want to run on those nodes. For example:

 run_on_nodes

 [{"dsn": "host=host-one port=5444 dbname=bdrdb", "node_id": "807899305", "response": {"command_status":
"VACUUM"}, "node_name": "node-one", "query_send_time": "2024-01-16 16:24:35.418323+00"}, {"dsn": "host=host-three
port=5432 dbname=bdrdb", "node_id": "199017004", "response": {"command_status": "VACUUM"}, "node_name": "node",
"query_send_time": "2024-01-16 16:24:35.4542+00"}]

This command runs the vacuum full foo command on the node-one and node-three nodes. The node names are passed to the function in an array.

The bdr.run_on_nodes function reports its results as JSONB. The results include the name of the node and the response (or error message) resulting from
running the command. Other fields included might be include and might not be relevant.

The results also appear as a single string that's hard to read. By applying some formatting to this string, it can become more readable.

Formatting bdr.run_on_nodes() output

Using Postgres's JSON expressions, you can reduce the output to just the columns you're interested in. The following command is functionally equivalent to the
previous example but lists only the node and response as its results:

 node | response
------------------+------------------------------
 node-one | {"command_status": "VACUUM"}
 node-three | {"command_status": "VACUUM"}

If an error occurs, the command_status field is set to error. An additional error_message value is included in the response. For example:

 node | response
------------------+--
 node-one | {"error_message": "ERROR: relation \"fool\" does not exist\n", "command_status": "ERROR"}
 node-three | {"error_message": "ERROR: relation \"fool\" does not exist\n", "command_status": "ERROR"}
(2 rows)

Defining a function for maintenance

If you find yourself regularly issuing maintenance commands to one node at a time, you can define a function to simplify things:

SELECTSELECT bdr.run_on_nodes(ARRAY['node-one','node-three'],'vacuum full foo');

selectselect q->>->>'node_name' asas node, q->>->>'response' asas response FROMFROM
jsonb_array_elements(bdr.run_on_nodes(ARRAY['node-one','node-three'], 'VACUUM FULL foo')) q;

selectselect q->>->>'node_name' asas node, q->>->>'response' asas response FROMFROM
jsonb_array_elements(bdr.run_on_nodes(ARRAY['node-one','node-three'], 'VACUUM FULL fool')) q;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 120

This function takes a node name and a command and runs the command on that node, returning the results as shown in this interaction:

 runmaint

 (node-one,"{""command_status"": ""VACUUM""}")

You can break up the response by using select * from :

 node | response
------------------+------------------------------
 node-one | {"command_status": "VACUUM"}
(1 row)

11 Postgres configuration

Several Postgres configuration parameters affect PGD nodes. You can set these parameters differently on each node, although we don't generally recommend it.

For PGD's own settings, see the PGD settings reference.

Postgres settings

To run correctly, PGD requires these Postgres settings:

wal_level — Must be set to logical , since PGD relies on logical decoding.
shared_preload_libraries — Must include bdr to enable the extension. Most other extensions can appear before or after the bdr entry in the

comma-separated list. One exception to that is pgaudit , which must appear in the list before bdr . Also, don't include pglogical in this list.
track_commit_timestamp — Must be set to on for conflict resolution to retrieve the timestamp for each conflicting row.

PGD requires these PostgreSQL settings to be set to appropriate values, which vary according to the size and scale of the cluster:

logical_decoding_work_mem — Memory buffer size used by logical decoding. Transactions larger than this size overflow the buffer and are stored
temporarily on local disk. Default is 64MB, but you can set it much higher.
max_worker_processes — PGD uses background workers for replication and maintenance tasks, so you need enough worker slots for it to work

correctly. The formula for the correct minimal number of workers for each database is to add together these values:
One per PostgreSQL instance
One per database on that instance
Four per PGD-enabled database
One per peer node in the PGD group
One for each writer-enabled per peer node in the PGD group You might need more worker processes temporarily when a node is being removed from a
PGD group.

createcreate oror replacereplace functionfunction runmaint(nodename varchar, command varchar) returns TABLETABLE(node text,response jsonb) asas
$$

beginbegin
returnreturn queryquery
selectselect (q->>->>'node_name')::text, (q->->'response') fromfrom jsonb_array_elements(bdr.run_on_nodes(ARRAY [nodename],
command)) asas q;
endend;
$$ language
'plpgsql';

selectselect runmaint('node-one','VACUUM FULL foo');

selectselect ** fromfrom runmaint('node-one','VACUUM FULL foo');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 121

max_wal_senders — Two needed for every peer node.
max_replication_slots — Two needed for every peer node.
wal_sender_timeout and wal_receiver_timeout — Determines how quickly a node considers its CAMO partner as disconnected or reconnected.

See CAMO failure scenarios for details.

In normal running for a group with N peer nodes, PGD requires N slots and WAL senders. During synchronization, PGD temporarily uses another N-1 slots and WAL
senders, so be careful to set the parameters high enough for this occasional peak demand.

With parallel apply turned on, the number of slots must be increased to N slots from the formula * writers. This is because the max_replication_slots also
sets the maximum number of replication origins, and some of the functionality of parallel apply uses extra origin per writer.

When the decoding worker is enabled, this process requires one extra replication slot per PGD group.

Changing the max_worker_processes , max_wal_senders , and max_replication_slots parameters requires restarting the local node.

A legacy synchronous replication mode is supported using the following parameters. See Durability and performance options for details and limitations.

synchronous_commit and synchronous_standby_names — Affects the durability and performance of PGD replication. in a similar way to physical
replication.

Time-based snapshots

snapshot_timestamp

Turns on the use of timestamp-based snapshots and sets the timestamp to use.

Max prepared transactions

max_prepared_transactions

Needs to be set high enough to cope with the maximum number of concurrent prepared transactions across the cluster due to explicit two-phase commits, CAMO,
or Eager transactions. Exceeding the limit prevents a node from running a local two-phase commit or CAMO transaction and prevents all Eager transactions on the
cluster. This parameter can only be set at Postgres server start.

12 DDL replication

DDL stands for data definition language, the subset of the SQL language that creates, alters, and drops database objects.

PGD provides Automatic DDL replication which makes certain DDL changes easier without your having to manually distribute the DDL change to all nodes and
ensure that they're consistent.

This section looks at how DDL replication is handled in PGD.

Overview provides a general outline of what PGD's DDL replication is capable of.

Replication Options looks at the options for controlling replication.

Locking examines how DDL replication uses locks to safely replicate DDL.

Managing DDL with PGD replication give best practice advice on why and how to limit the impact of DDL changes so they do not overly affect the smooth

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 122

https://www.postgresql.org/docs/11/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

running of the cluster.

Command Handling is a reference to all DDL commands, what locks they take and any special handling that may be involved in their use and execution.

DDL role manipulation notes issues around manipulating roles over multiple databases in a cluster

Workarounds gives a range of options for handling situations where DDL replication may present restrictions, such as altering columns, constraints and
types.

DDL-like PGD functions details the PGD functions which behave like DDL and therefore behave in a similar way and are subject to similar restrictions.

12.1 DDL overview

DDL stands for data definition language, the subset of the SQL language that creates, alters, and drops database objects.

Replicated DDL

For operational convenience and correctness, PGD replicates most DDL actions, with these exceptions:

Temporary or unlogged relations
Certain DDL statements (mostly long running)
Locking commands (LOCK)
Table maintenance commands (VACUUM , ANALYZE , CLUSTER , REINDEX)
Actions of autovacuum
Operational commands (CHECKPOINT , ALTER SYSTEM)
Actions related to databases or tablespaces

Automatic DDL replication makes certain DDL changes easier without having to manually distribute the DDL change to all nodes and ensure that they're consistent.

In the default replication set, DDL is replicated to all nodes by default.

Differences from PostgreSQL

PGD is significantly different from standalone PostgreSQL when it comes to DDL replication. Treating it the same is the most common issue with PGD.

The main difference from table replication is that DDL replication doesn't replicate the result of the DDL but the statement itself. This works very well in most cases,
although it introduces the requirement that the DDL must execute similarly on all nodes. A more subtle point is that the DDL must be immutable with respect to all
datatype-specific parameter settings, including any datatypes introduced by extensions (not built in). For example, the DDL statement must execute correctly in the
default encoding used on each node.

Executing DDL on PGD systems

A PGD group isn't the same as a standalone PostgreSQL server. It's based on asynchronous multi-master replication without central locking and without a
transaction coordinator. This has important implications when executing DDL.

DDL that executes in parallel continues to do so with PGD. DDL execution respects the parameters that affect parallel operation on each node as it executes, so you
might notice differences in the settings between nodes.

Prevent the execution of conflicting DDL, otherwise DDL replication causes errors and the replication stops.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 123

PGD offers three levels of protection against those problems:

ddl_locking = 'all' is the strictest option and is best when DDL might execute from any node concurrently and you want to ensure correctness. This is the
default.

ddl_locking = 'dml' is an option that is only safe when you execute DDL from one node at any time. You should only use this setting if you can completely
control where DDL is executed. Executing DDL from a single node it ensures that there are no inter-node conflicts. Intra-node conflicts are already handled by
PostgreSQL.

ddl_locking = 'off' is the least strict option and is dangerous in general use. This option skips locks altogether, avoiding any performance overhead, which
makes it a useful option when creating a new and empty database schema.

These options can be set only by the bdr_superuser, by the superuser, or in the postgres.conf configuration file.

When using the bdr.replicate_ddl_command , you can set this parameter directly with the third argument, using the specified bdr.ddl_locking setting
only for the DDL commands passed to that function.

12.2 DDL replication options

The bdr.ddl_replication parameter specifies replication behavior.

bdr.ddl_replication = all is the default and replicates DDL to the default replication set, which by default means all nodes. Nondefault replication sets
don't replicate DDL unless they have a DDL filter defined for them.

You can also replicate DDL to specific replication sets using the function bdr.replicate_ddl_command() . This can be helpful if you want to run DDL
commands when a node is down or if you want to have indexes or partitions that exist on a subset of nodes or rep sets, for example, all nodes at site1.

SELECT bdr.replicate_ddl_command(
 'CREATE INDEX CONCURRENTLY ON foo (col7);',
 ARRAY['site1'], -- the replication sets
 'all'); -- ddl_locking to apply

While we don't recommend it, you can skip automatic DDL replication and execute it manually on each node using the bdr.ddl_replication configuration
parameter.

SET bdr.ddl_replication = off;

When set, it makes PGD skip both the global locking and the replication of executed DDL commands. You must then run the DDL manually on all nodes.

WarningWarning

Executing DDL manually on each node without global locking can cause the whole PGD group to stop replicating if conflicting DDL or DML executes
concurrently.

The bdr.ddl_replication parameter can be set only by the bdr_superuser, by superuser, or in the postgres.conf configuration file.

12.3 DDL locking details

Two kinds of locks enforce correctness of replicated DDL with PGD; the global DDL lock and the global DML lock.

The global DDL lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 124

The first kind is known as a global DDL lock and is used only when ddl_locking = 'all' . A global DDL lock prevents any other DDL from executing on the
cluster while each DDL statement runs. This ensures full correctness in the general case but is too strict for many simple cases. PGD acquires a global lock on DDL
operations the first time in a transaction where schema changes are made. This effectively serializes the DDL-executing transactions in the cluster. In other words,
while DDL is running, no other connection on any node can run another DDL command, even if it affects different tables.

To acquire a lock on DDL operations, the PGD node executing DDL contacts the other nodes in a PGD group and asks them to grant it the exclusive right to execute
DDL.

The lock request is sent by the regular replication stream, and the nodes respond by the replication stream as well. So it's important that nodes (or at least a
majority of the nodes) run without much replication delay. Otherwise it might take a long time for the node to acquire the DDL lock. Once the majority of nodes
agrees, the DDL execution is carried out.

The ordering of DDL locking is decided using the Raft protocol. DDL statements executed on one node are executed in the same sequence on all other nodes.

To ensure that the node running a DDL has seen effects of all prior DDLs run in the cluster, it waits until it catches up with the node that ran the previous DDL. If the
node running the current DDL is lagging behind in replication with respect to the node that ran the previous DDL, then it might take a long time to acquire the lock.
Hence it's preferable to run DDLs from a single node or the nodes that have nearly caught up with replication changes originating at other nodes.

A global DDL Lock has to be granted by a majority of data and witness nodes, where a majority is N/2+1 of the eligible nodes. Subscriber-only nodes aren't eligible
to participate.

The global DML lock

The second kind is known as a global DML lock or relation DML lock. This kind of lock is used when either ddl_locking = all or ddl_locking = dml ,
and the DDL statement might cause in-flight DML statements to fail. These failures can occur when you add or modify a constraint, such as a unique constraint,
check constraint, or NOT NULL constraint. Relation DML locks affect only one relation at a time. Relation DML locks ensure that no DDL executes while there are
changes in the queue that might cause replication to halt with an error.

To acquire the global DML lock on a table, the PGD node executing the DDL contacts all other nodes in a PGD group, asking them to lock the table against writes
and waiting while all pending changes to that table are drained. Once all nodes are fully caught up, the originator of the DML lock is free to perform schema
changes to the table and replicate them to the other nodes.

The global DML lock holds an EXCLUSIVE LOCK on the table on each node, so it blocks DML, other DDL, VACUUM, and index commands against that table while it
runs. This is true even if the global DML lock is held for a command that normally doesn't take an EXCLUSIVE LOCK or higher.

Waiting for pending DML operations to drain can take a long time and even longer if replication is currently lagging. This means that schema changes affecting row
representation and constraints, unlike with data changes, can be performed only while all configured nodes can be reached and are keeping up reasonably well
with the current write rate. If such DDL commands must be performed while a node is down, first remove the down node from the configuration.

AllAll eligible data notes must agree to grant a global DML lock before the lock is granted. Witness and subscriber-only nodes aren't eligible to participate.

If a DDL statement isn't replicated, no global locks are acquired.

Locking behavior is specified by the bdr.ddl_locking parameter, as explained in Executing DDL on PGD systems:

ddl_locking = all takes global DDL lock and, if needed, takes relation DML lock.
ddl_locking = dml skips global DDL lock and, if needed, takes relation DML lock.
ddl_locking = off skips both global DDL lock and relation DML lock.

Some PGD functions make DDL changes. For those functions, DDL locking behavior applies, which is noted in the documentation for each function.

Thus, ddl_locking = dml is only safe when you can guarantee that no conflicting DDL is executed from other nodes. With this setting, the statements that
require only the global DDL lock don't use the global locking at all.

ddl_locking = off is only safe when you can guarantee that there are no conflicting DDL and no conflicting DML operations on the database objects DDL
executes on. If you turn locking off and then experience difficulties, you might lose in-flight changes to data. The user application team needs to resolve any issues
caused.

In some cases, concurrently executing DDL can properly be serialized. If these serialization failures occur, the DDL might reexecute.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 125

DDL replication isn't active on logical standby nodes until they are promoted.

Some PGD management functions act like DDL, meaning that they attempt to take global locks, and their actions are replicated if DDL replication is active. The full
list of replicated functions is listed in PGD functions that behave like DDL.

DDL executed on temporary tables never need global locks.

ALTER or DROP of an object created in the current transaction doesn't required global DML lock.

Monitoring of global DDL locks and global DML locks is shown in Monitoring.

12.4 Managing DDL with PGD replication

Minimizing the impact of DDL

Minimizing the impact of DDL is good operational advice for any database. These points become even more important with PGD:

To minimize the impact of DDL, make transactions performing DDL short, don't combine them with lots of row changes, and avoid long-running foreign key or
other constraint rechecks.

For ALTER TABLE , use ADD CONSTRAINT NOT VALID followed by another transaction with VALIDATE CONSTRAINT rather than using ADD
CONSTRAINT alone. VALIDATE CONSTRAINT waits until replayed on all nodes, which gives a noticeable delay to receive confirmations.

When indexing, use the CONCURRENTLY option whenever possible.

An alternative way of executing long-running DDL is to disable DDL replication and then to execute the DDL statement separately on each node. You can still do this
using a single SQL statement, as shown in the following example. Global locking rules still apply, so be careful not to lock yourself out with this type of usage,
which is more of a workaround.

We recommend using the bdr.run_on_all_nodes() technique with CREATE INDEX CONCURRENTLY , noting that DDL replication must be disabled for
the whole session because CREATE INDEX CONCURRENTLY is a multi-transaction command. Avoid CREATE INDEX on production systems since it prevents
writes while it executes. REINDEX is replicated in versions up to 3.6 but not with PGD 3.7 or later. Avoid using REINDEX because of the AccessExclusiveLocks it
holds.

Instead, use REINDEX CONCURRENTLY (or reindexdb --concurrently), which is available in PG12+ or 2QPG11+.

You can disable DDL replication when using command-line utilities like this:

Multiple DDL statements might benefit from bunching into a single transaction rather than fired as individual statements, so take the DDL lock only once. This might
not be desirable if the table-level locks interfere with normal operations.

If DDL is holding up the system for too long, you can safely cancel the DDL on the originating node with Control-CControl-C in psql or with pg_cancel_backend() . You
can't cancel a DDL lock from any other node.

You can control how long the global lock takes with optional global locking timeout settings. bdr.global_lock_timeout limits how long the wait for
acquiring the global lock can take before it's canceled. bdr.global_lock_statement_timeout limits the runtime length of any statement in transaction
that holds global locks, and bdr.global_lock_idle_timeout sets the maximum allowed idle time (time between statements) for a transaction holding any

SELECTSELECT
bdr.run_on_all_nodes(ddl
 CREATECREATE INDEXINDEX CONCURRENTLY index_a ONON
table_a(i);
ddl);

$ export PGOPTIONS=="-c
bdr.ddl_replication=off"
$ pg_restore --section=post-data

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 126

global locks. You can disable all of these timeouts by setting their values to zero.

Once the DDL operation has committed on the originating node, you can't cancel or abort it. The PGD group must wait for it to apply successfully on other nodes
that confirmed the global lock and for them to acknowledge replay. For this reason, keep DDL transactions short and fast.

Handling DDL with down nodes

If the node initiating the global DDL lock goes down after it acquired the global lock (either DDL or DML), the lock stays active. The global locks don't time out, even
if timeouts were set. In case the node comes back up, it releases all the global locks that it holds.

If it stays down for a long time or indefinitely, remove the node from the PGD group to release the global locks. This is one reason for executing emergency DDL
using the SET command as the bdr_superuser to update the bdr.ddl_locking value.

If one of the other nodes goes down after it confirmed the global lock but before the command acquiring it executed, the execution of that command requesting the
lock continues as if the node were up.

As mentioned earlier, the global DDL lock requires only a majority of the nodes to respond, and so it works if part of the cluster is down, as long as a majority is
running and reachable. But the DML lock can't be acquired unless the whole cluster is available.

With global DDL or global DML lock, if another node goes down, the command continues normally, and the lock is released.

Statement-specific DDL replication concerns

Not all commands can be replicated automatically. Such commands are generally disallowed, unless DDL replication is turned off by turning
bdr.ddl_replication off.

PGD prevents some DDL statements from running when it's active on a database. This protects the consistency of the system by disallowing statements that can't be
replicated correctly or for which replication isn't yet supported.

If a statement isn't permitted under PGD, you can often find another way to do the same thing. For example, you can't do an ALTER TABLE , which adds a column
with a volatile default value. But generally you can rephrase that as a series of independent ALTER TABLE and UPDATE statements that work.

Generally, unsupported statements are prevented from executing, raising a feature_not_supported (SQLSTATE 0A000) error.

Any DDL that references or relies on a temporary object can't be replicated by PGD and throws an error if executed with DDL replication enabled.

12.5 DDL command handling matrix

The following table describes the utility or DDL commands that are allowed, the ones that are replicated, and the type of global lock they take when they're
replicated.

For some more complex statements like ALTER TABLE , these can differ depending on the subcommands executed. Every such command has detailed
explanation under the following table.

Command matrix

Command Allowed Replicated Lock

ALTER AGGREGATE Y Y DDL

ALTER CAST Y Y DDL

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 127

ALTER COLLATION Y Y DDL

ALTER CONVERSION Y Y DDL

ALTER DATABASE Y N N

ALTER DATABASE LINK Y Y DDL

ALTER DEFAULT PRIVILEGES Y Y DDL

ALTER DIRECTORY Y Y DDL

ALTER DOMAIN Y Y DDL

ALTER EVENT TRIGGER Y Y DDL

ALTER EXTENSION Y Y DDL

ALTER FOREIGN DATA WRAPPER Y Y DDL

ALTER FOREIGN TABLE Y Y DDL

ALTER FUNCTION Y Y DDL

ALTER INDEX Y Y DDL

ALTER LANGUAGE Y Y DDL

ALTER LARGE OBJECT N N N

ALTER MATERIALIZED VIEW Y N N

ALTER OPERATOR Y Y DDL

ALTER OPERATOR CLASS Y Y DDL

ALTER OPERATOR FAMILY Y Y DDL

ALTER PACKAGE Y Y DDL

ALTER POLICY Y Y DDL

ALTER PROCEDURE Y Y DDL

ALTER PROFILE Y Y Details

ALTER PUBLICATION Y Y DDL

ALTER QUEUE Y Y DDL

ALTER QUEUE TABLE Y Y DDL

ALTER REDACTION POLICY Y Y DDL

ALTER RESOURCE GROUP Y N N

ALTER ROLE Y Y DDL

ALTER ROUTINE Y Y DDL

ALTER RULE Y Y DDL

ALTER SCHEMA Y Y DDL

ALTER SEQUENCE Details Y DML

ALTER SERVER Y Y DDL

ALTER SESSION Y N N

ALTER STATISTICS Y Y DDL

ALTER SUBSCRIPTION Y Y DDL

ALTER SYNONYM Y Y DDL

ALTER SYSTEM Y N N

ALTER TABLE Details Y Details

ALTER TABLESPACE Y N N

ALTER TEXT SEARCH CONFIGURATION Y Y DDL

ALTER TEXT SEARCH DICTIONARY Y Y DDL

ALTER TEXT SEARCH PARSER Y Y DDL

ALTER TEXT SEARCH TEMPLATE Y Y DDL

ALTER TRIGGER Y Y DDL

ALTER TYPE Y Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 128

ALTER USER MAPPING Y Y DDL

ALTER VIEW Y Y DDL

ANALYZE Y N N

BEGIN Y N N

CHECKPOINT Y N N

CLOSE Y N N

CLOSE CURSOR Y N N

CLOSE CURSOR ALL Y N N

CLUSTER Y N N

COMMENT Y Details DDL

COMMIT Y N N

COMMIT PREPARED Y N N

COPY Y N N

COPY FROM Y N N

CREATE ACCESS METHOD Y Y DDL

CREATE AGGREGATE Y Y DDL

CREATE CAST Y Y DDL

CREATE COLLATION Y Y DDL

CREATE CONSTRAINT Y Y DDL

CREATE CONVERSION Y Y DDL

CREATE DATABASE Y N N

CREATE DATABASE LINK Y Y DDL

CREATE DIRECTORY Y Y DDL

CREATE DOMAIN Y Y DDL

CREATE EVENT TRIGGER Y Y DDL

CREATE EXTENSION Y Y DDL

CREATE FOREIGN DATA WRAPPER Y Y DDL

CREATE FOREIGN TABLE Y Y DDL

CREATE FUNCTION Y Y DDL

CREATE INDEX Y Y DML

CREATE LANGUAGE Y Y DDL

CREATE MATERIALIZED VIEW Y N N

CREATE OPERATOR Y Y DDL

CREATE OPERATOR CLASS Y Y DDL

CREATE OPERATOR FAMILY Y Y DDL

CREATE PACKAGE Y Y DDL

CREATE PACKAGE BODY Y Y DDL

CREATE POLICY Y Y DML

CREATE PROCEDURE Y Y DDL

CREATE PROFILE Y Y Details

CREATE PUBLICATION Y Y DDL

CREATE QUEUE Y Y DDL

CREATE QUEUE TABLE Y Y DDL

CREATE REDACTION POLICY Y Y DDL

CREATE RESOURCE GROUP Y N N

CREATE ROLE Y Y DDL

CREATE ROUTINE Y Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 129

CREATE RULE Y Y DDL

CREATE SCHEMA Y Y DDL

CREATE SEQUENCE Details Y DDL

CREATE SERVER Y Y DDL

CREATE STATISTICS Y Y DDL

CREATE SUBSCRIPTION Y Y DDL

CREATE SYNONYM Y Y DDL

CREATE TABLE Details Y DDL

CREATE TABLE AS Details Y DDL

CREATE TABLESPACE Y N N

CREATE TEXT SEARCH CONFIGURATION Y Y DDL

CREATE TEXT SEARCH DICTIONARY Y Y DDL

CREATE TEXT SEARCH PARSER Y Y DDL

CREATE TEXT SEARCH TEMPLATE Y Y DDL

CREATE TRANSFORM Y Y DDL

CREATE TRIGGER Y Y DDL

CREATE TYPE Y Y DDL

CREATE TYPE BODY Y Y DDL

CREATE USER MAPPING Y Y DDL

CREATE VIEW Y Y DDL

DEALLOCATE Y N N

DEALLOCATE ALL Y N N

DECLARE CURSOR Y N N

DISCARD Y N N

DISCARD ALL Y N N

DISCARD PLANS Y N N

DISCARD SEQUENCES Y N N

DISCARD TEMP Y N N

DO Y N N

DROP ACCESS METHOD Y Y DDL

DROP AGGREGATE Y Y DDL

DROP CAST Y Y DDL

DROP COLLATION Y Y DDL

DROP CONSTRAINT Y Y DDL

DROP CONVERSION Y Y DDL

DROP DATABASE Y N N

DROP DATABASE LINK Y Y DDL

DROP DIRECTORY Y Y DDL

DROP DOMAIN Y Y DDL

DROP EVENT TRIGGER Y Y DDL

DROP EXTENSION Y Y DDL

DROP FOREIGN DATA WRAPPER Y Y DDL

DROP FOREIGN TABLE Y Y DDL

DROP FUNCTION Y Y DDL

DROP INDEX Y Y DDL

DROP LANGUAGE Y Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 130

DROP MATERIALIZED VIEW Y N N

DROP OPERATOR Y Y DDL

DROP OPERATOR CLASS Y Y DDL

DROP OPERATOR FAMILY Y Y DDL

DROP OWNED Y Y DDL

DROP PACKAGE Y Y DDL

DROP PACKAGE BODY Y Y DDL

DROP POLICY Y Y DDL

DROP PROCEDURE Y Y DDL

DROP PROFILE Y Y DDL

DROP PUBLICATION Y Y DDL

DROP QUEUE Y Y DDL

DROP QUEUE TABLE Y Y DDL

DROP REDACTION POLICY Y Y DDL

DROP RESOURCE GROUP Y N N

DROP ROLE Y Y DDL

DROP ROUTINE Y Y DDL

DROP RULE Y Y DDL

DROP SCHEMA Y Y DDL

DROP SEQUENCE Y Y DDL

DROP SERVER Y Y DDL

DROP STATISTICS Y Y DDL

DROP SUBSCRIPTION Y Y DDL

DROP SYNONYM Y Y DDL

DROP TABLE Y Y DML

DROP TABLESPACE Y N N

DROP TEXT SEARCH CONFIGURATION Y Y DDL

DROP TEXT SEARCH DICTIONARY Y Y DDL

DROP TEXT SEARCH PARSER Y Y DDL

DROP TEXT SEARCH TEMPLATE Y Y DDL

DROP TRANSFORM Y Y DDL

DROP TRIGGER Y Y DDL

DROP TYPE Y Y DDL

DROP TYPE BODY Y Y DDL

DROP USER MAPPING Y Y DDL

DROP VIEW Y Y DDL

EXECUTE Y N N

EXPLAIN Y Details Details

FETCH Y N N

GRANT Y Details DDL

GRANT ROLE Y Y DDL

IMPORT FOREIGN SCHEMA Y Y DDL

LISTEN Y N N

LOAD Y N N

LOAD ROW DATA Y Y DDL

LOCK TABLE Y N Details

MOVE Y N N

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 131

NOTIFY Y N N

PREPARE Y N N

PREPARE TRANSACTION Y N N

REASSIGN OWNED Y Y DDL

REFRESH MATERIALIZED VIEW Y N N

REINDEX Y N N

RELEASE Y N N

RESET Y N N

REVOKE Y Details DDL

REVOKE ROLE Y Y DDL

ROLLBACK Y N N

ROLLBACK PREPARED Y N N

SAVEPOINT Y N N

SECURITY LABEL Y Details DDL

SELECT INTO Details Y DDL

SET Y N N

SET CONSTRAINTS Y N N

SHOW Y N N

START TRANSACTION Y N N

TRUNCATE TABLE Y Details Details

UNLISTEN Y N N

VACUUM Y N N

Command Allowed Replicated Lock

Command Notes

ALTER SEQUENCE

Generally ALTER SEQUENCE is supported, but when using global sequences, some options have no effect.

ALTER SEQUENCE ... RENAME isn't supported on galloc sequences (only). ALTER SEQUENCE ... SET SCHEMA isn't supported on galloc sequences
(only).

ALTER TABLE

Generally, ALTER TABLE commands are allowed. However, several subcommands aren't supported.

ALTER TABLE disallowed commands

Some variants of ALTER TABLE currently aren't allowed on a PGD node:

ADD COLUMN ... DEFAULT (non-immutable expression) — This is not allowed because it currently results in different data on different nodes.
See Adding a column for a suggested workaround.
ADD CONSTRAINT ... EXCLUDE — Exclusion constraints are not supported. Exclusion constraints are a way to ensure that no two rows in a table have

overlapping ranges. This is useful in a synchronous system where you can ensure that the constraint is enforced on all nodes at the same time. But in an
asynchronous system, you can't ensure that the constraint is enforced on all nodes at the same time. This can lead to data inconsistency and changes that
can't be replayed; therefore, exclusion constraints aren't supported.
ALTER TABLE ... SET WITH[OUT] OIDS — Isn't supported for the same reasons as in CREATE TABLE .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 132

ALTER COLUMN ... SET STORAGE external — Is rejected if the column is one of the columns of the replica identity for the table.
RENAME — Can't rename an Autopartitioned table.
SET SCHEMA — Can't set the schema of an Autopartitioned table.
ALTER COLUMN ... TYPE — Changing a column's type isn't supported if the command causes the whole table to be rewritten, which occurs when the

change isn't binary coercible. Binary coercible changes might be allowed only one way. For example, the change from VARCHAR(128) to
VARCHAR(256) is binary coercible and therefore allowed, whereas the change VARCHAR(256) to VARCHAR(128) isn't binary coercible and

therefore normally disallowed. Nonreplicated ALTER COLUMN ... TYPE , can be allowed if the column is automatically castable to the new type (it
doesn't contain the USING clause). An example follows. Table rewrites hold an AccessExclusiveLock for extended periods on larger tables, so such
commands are likely to be infeasible on highly available databases in any case. See Changing a column's type for a suggested workaround.
ALTER TABLE ... ADD FOREIGN KEY — Isn't supported if current user doesn't have permission to read the referenced table or if the referenced table

has RLS restrictions enabled that the current user can't bypass.

The following example fails because it tries to add a constant value of type timestamp onto a column of type timestamptz . The cast between timestamp
and timestamptz relies on the time zone of the session and so isn't immutable.

Starting in PGD 3.7.4, you can add certain types of constraints, such as CHECK and FOREIGN KEY constraints, without taking a DML lock. But this requires a
two-step process of first creating a NOT VALID constraint and then validating the constraint in a separate transaction with the ALTER TABLE ...
VALIDATE CONSTRAINT command. See Adding a CONSTRAINT for more details.

ALTER TABLE locking

The following variants of ALTER TABLE take only DDL lock and not a DML lock:

ALTER TABLE ... ADD COLUMN ... (immutable) DEFAULT
ALTER TABLE ... ALTER COLUMN ... SET DEFAULT expression
ALTER TABLE ... ALTER COLUMN ... DROP DEFAULT
ALTER TABLE ... ALTER COLUMN ... TYPE if it doesn't require rewrite
ALTER TABLE ... ALTER COLUMN ... SET STATISTICS
ALTER TABLE ... VALIDATE CONSTRAINT
ALTER TABLE ... ATTACH PARTITION
ALTER TABLE ... DETACH PARTITION
ALTER TABLE ... ENABLE TRIGGER (ENABLE REPLICA TRIGGER still takes a DML lock)
ALTER TABLE ... CLUSTER ON
ALTER TABLE ... SET WITHOUT CLUSTER
ALTER TABLE ... SET (storage_parameter = value [, ...])
ALTER TABLE ... RESET (storage_parameter = [, ...])
ALTER TABLE ... OWNER TO

All other variants of ALTER TABLE take a DML lock on the table being modified. Some variants of ALTER TABLE have restrictions, noted below.

ALTER TABLE examples

This next example works because the type change is binary coercible and so doesn't cause a table rewrite. It executes as a catalog-only change.

However, making this change to reverse the command isn't possible because the change from VARCHAR(128) to VARCHAR(20) isn't binary coercible.

For workarounds, see Restricted DDL workarounds.

ALTERALTER TABLETABLE
foo
 ADDADD expiry_date timestamptz DEFAULTDEFAULT timestamp '2100-01-01 00:00:00' NOTNOT
NULLNULL;

CREATECREATE TABLETABLE foo (idid BIGINT PRIMARYPRIMARY KEYKEY, description
VARCHAR(20));
ALTERALTER TABLETABLE foo ALTERALTER COLUMNCOLUMN description TYPETYPE
VARCHAR(128);

ALTERALTER TABLETABLE foo ALTERALTER COLUMNCOLUMN description TYPETYPE
VARCHAR(20);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 133

It's useful to provide context for different types of ALTER TABLE ... ALTER COLUMN TYPE (ATCT) operations that are possible in general and in
nonreplicated environments.

Some ATCT operations update only the metadata of the underlying column type and don't require a rewrite of the underlying table data. This is typically the case
when the existing column type and the target type are binary coercible. For example:

You can also change the column type to VARCHAR or TEXT data types because of binary coercibility. Again, this is just a metadata update of the underlying
column type.

However, if you want to reduce the size of col2, then that leads to a rewrite of the underlying table data. Rewrite of a table is normally restricted.

To give an example with nontext types, consider col3 above with type INTEGER. An ATCT operation that tries to convert to SMALLINT or BIGINT fails in a similar
manner as above.

In both of these failing cases, there's an automatic assignment cast from the current types to the target types. However, there's no binary coercibility, which ends up
causing a rewrite of the underlying table data.

In such cases, in controlled DBA environments, you can change the type of a column to an automatically castable one by adopting a rolling upgrade for the type of
this column in a nonreplicated environment on all the nodes, one by one. Suppose the DDL isn't replicated and the change of the column type is to an automatically
castable one. You can then allow the rewrite locally on the node performing the alter, along with concurrent activity on other nodes on this same table. You can then
repeat this nonreplicated ATCT operation on all the nodes one by one to bring about the desired change of the column type across the entire EDB Postgres
Distributed cluster. Because this involves a rewrite, the activity still takes the DML lock for a brief period and thus requires that the whole cluster is available. With
these specifics in place, you can carry out the rolling upgrade of the nonreplicated alter activity like this:

Due to automatic assignment casts being available for many data types, this local nonreplicated ATCT operation supports a wide variety of conversions. Also, ATCT
operations that use a USING clause are likely to fail because of the lack of automatic assignment casts. This example shows a few common conversions with
automatic assignment casts:

This example isn't an exhaustive list of possibly allowable ATCT operations in a nonreplicated environment. Not all ATCT operations work. The cases where no
automatic assignment is possible fail even if you disable DDL replication. So, while conversion from numeric types to text types works in a nonreplicated

CREATECREATE TABLETABLE samplesample (col1 BIGINT PRIMARYPRIMARY KEYKEY, col2 VARCHAR(128), col3
INT);
ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col2 TYPETYPE VARCHAR(256);

ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col2 TYPETYPE VARCHAR;
ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col2 TYPETYPE TEXT;

ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col2 TYPETYPE VARCHAR(64);
ERROR: ALTERALTER TABLETABLE ALTERALTER COLUMNCOLUMN TYPETYPE that rewrites tabletable datadata may notnot affect replicated tablestables onon a PGD
node

ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col3 TYPETYPE bigint;
ERROR: ALTERALTER TABLETABLE ALTERALTER COLUMNCOLUMN TYPETYPE that rewrites tabletable datadata may notnot affect replicated tablestables onon a PGD
node

-- foreach node in EDB Postgres Distributed cluster
do:
SETSET bdr.ddl_replication TOTO
FALSEFALSE;
ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col2 TYPETYPE VARCHAR(64);
ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col3 TYPETYPE BIGINT;
RESETRESET bdr.ddl_replication;
-- done

-- foreach node in EDB Postgres Distributed cluster
do:
SETSET bdr.ddl_replication TOTO
FALSEFALSE;
ATCT operations toto--fromfrom {INTEGER, SMALLINT,
BIGINT}
ATCT operations toto--fromfrom {CHAR(n), VARCHAR(n), VARCHAR,
TEXT}
ATCT operations fromfrom numeric typestypes toto text typestypes
RESETRESET bdr.ddl_replication;
-- done

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 134

environment, conversion back from text type to numeric types fails.

While the ATCT operations in nonreplicated environments support a variety of type conversions, the rewrite can still fail if the underlying table data contains values
that you can't assign to the new data type. For example, suppose the current type for a column is VARCHAR(256) and you try a nonreplicated ATCT operation to
convert it into VARCHAR(128) . If there's any existing data in the table that's wider than 128 bytes, then the rewrite operation fails locally.

If underlying table data meets the characteristics of the new type, then the rewrite succeeds. However, replication might fail if other nodes that haven't yet
performed the nonreplicated rolling data type upgrade introduce new data that is wider than 128 bytes concurrently to this local ATCT operation. This brings
replication to a halt in the cluster. So be aware of the data type restrictions and characteristics at the database and application levels while performing these
nonreplicated rolling data type upgrade operations. We strongly recommend that you perform and test such ATCT operations in controlled and fully aware DBA
environments. These ATCT operations are asymmetric, and backing out certain changes that fail can lead to table rewrites that take a long time.

Also, you can't perform the implicit castable ALTER activity in transaction blocks.

ALTER TYPE

ALTER TYPE is replicated, but a global DML lock isn't applied to all tables that use that data type, since PostgreSQL doesn't record those dependencies. See
Restricted DDL workarounds.

COMMENT ON

All variants of COMMENT ON are allowed, but COMMENT ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

CREATE PROFILE or ALTER PROFILE

The PASSWORD_VERIFY_FUNCTION associated with the profile should be IMMUTABLE if the function is SECURITY DEFINER . Such a CREATE PROFILE
or ALTER PROFILE command will be replicated but subsequent CREATE USER or ALTER USER commands using this profile will break the replication due
to the writer worker throwing the error: cannot change current role within security-restricted operation .

CREATE SEQUENCE

Generally CREATE SEQUENCE is supported, but when using global sequences, some options have no effect.

CREATE TABLE

SETSET bdr.ddl_replication TOTO
FALSEFALSE;
-- conversion from BIGINT to TEXT
works
ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col3 TYPETYPE TEXT;
-- conversion from TEXT back to BIGINT
fails
ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col3 TYPETYPE BIGINT;
ERROR: ALTERALTER TABLETABLE ALTERALTER COLUMNCOLUMN TYPETYPE which cannot be automatically cast toto newnew typetype may notnot affect replicated
tablestables onon a PGD node
RESETRESET bdr.ddl_replication;

INSERTINSERT INTOINTO samplesample VALUESVALUES (1, repeat('a', 200),
10);
SETSET bdr.ddl_replication TOTO
FALSEFALSE;
ALTERALTER TABLETABLE samplesample ALTERALTER COLUMNCOLUMN col2 TYPETYPE VARCHAR(128);
INFO: inin rewriterewrite
ERROR: value too long forfor typetype character
varying(128)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 135

Generally CREATE TABLE is supported, but CREATE TABLE WITH OIDS isn't allowed on a PGD node.

CREATE TABLE AS and SELECT INTO

CREATE TABLE AS and SELECT INTO are allowed only if all subcommands are also allowed.

EXPLAIN

Generally EXPLAIN is allowed, but because EXPLAIN ANALYZE can have side effects on the database, there are some restrictions on it.

EXPLAIN ANALYZE Replication

EXPLAIN ANALYZE follows replication rules of the analyzed statement.

EXPLAIN ANALYZE Locking

EXPLAIN ANALYZE follows locking rules of the analyzed statement.

GRANT and REVOKE

Generally GRANT and REVOKE statements are supported, however GRANT/REVOKE ON TABLESPACE/LARGE OBJECT aren't replicated.

LOCK TABLE

LOCK TABLE isn't replicated, but it might acquire the global DML lock when bdr.lock_table_locking is set on .

You can also use The bdr.global_lock_table() function to explicitly request a global DML lock.

SECURITY LABEL

All variants of SECURITY LABEL are allowed, but SECURITY LABEL ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

TRUNCATE Replication

TRUNCATE command is replicated as DML, not as a DDL statement. Whether the TRUNCATE on table is replicated depends on replication settings for each
affected table.

TRUNCATE Locking

Even though TRUNCATE isn't replicated the same way as other DDL, it can acquire the global DML lock when bdr.truncate_locking is set to on .

12.6 DDL and role manipulation statements

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 136

Users are global objects in a PostgreSQL instance, which means they span multiple databases while PGD operates on an individual database level. This means that
role manipulation statement handling needs extra thought.

PGD requires that any roles that are referenced by any replicated DDL must exist on all nodes. The roles don't have to have the same grants, password, and so on,
but they must exist.

PGD replicates role manipulation statements if bdr.role_replication is enabled (default) and role manipulation statements are run in a PGD-enabled
database.

The role manipulation statements include the following:

CREATE ROLE
ALTER ROLE
DROP ROLE
GRANT ROLE
CREATE USER
ALTER USER
DROP USER
CREATE GROUP
ALTER GROUP
DROP GROUP

In general, either:

Configure the system with bdr.role_replication = off and deploy all role changes (user and group) by external orchestration tools like Ansible,
Puppet, and Chef or explicitly replicated by bdr.replicate_ddl_command() .

Configure the system so that exactly one PGD-enabled database on the PostgreSQL instance has bdr.role_replication = on and run all role
management DDL on that database.

We recommended that you run all role management commands in one database.

If role replication is turned off, then the administrator must ensure that any roles used by DDL on one node also exist on the other nodes. Otherwise PGD apply stalls
with an error until the role is created on the other nodes.

PGD with non-PGD-enabled databasesPGD with non-PGD-enabled databases

PGD doesn't capture and replicate role management statements when they run on a non-PGD-enabled database in a PGD-enabled PostgreSQL instance.
For example, if you have DBs 'bdrdb' (bdr group member) and 'postgres' (bare db), and bdr.role_replication = on , then a CREATE USER run
in bdrdb is replicated, but a CREATE USER run in postgres isn't.

12.7 Workarounds for DDL restrictions

Some of the limitations of PGD DDL operation handling can be worked around. Often splitting up the operation into smaller changes can produce the desired result
that either isn't allowed as a single statement or requires excessive locking.

Adding a CONSTRAINT

You can add CHECK and FOREIGN KEY constraints without requiring a DML lock. This involves a two-step process.

ALTER TABLE ... ADD CONSTRAINT ... NOT VALID
ALTER TABLE ... VALIDATE CONSTRAINT

Execute these steps in two different transactions. Both these steps take DDL lock only on the table and hence can be run even when one or more nodes are down.
But to validate a constraint, PGD must ensure that:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 137

All nodes in the cluster see the ADD CONSTRAINT command.
The node validating the constraint applied replication changes from all other nodes prior to creating the NOT VALID constraint on those nodes.

So even though the new mechanism doesn't need all nodes to be up while validating the constraint, it still requires that all nodes applied the ALTER TABLE ..
ADD CONSTRAINT ... NOT VALID command and made enough progress. PGD waits for a consistent state to be reached before validating the constraint.

The new facility requires the cluster to run with Raft protocol version 24 and beyond. If the Raft protocol isn't yet upgraded, the old mechanism is used, resulting in
a DML lock request.

Adding a column

To add a column with a volatile default, run these commands in separate transactions:

This approach splits schema changes and row changes into separate transactions that PGD can execute and results in consistent data across all nodes in a PGD
group.

For best results, batch the update into chunks so that you don't update more than a few tens or hundreds of thousands of rows at once. You can do this using a
PROCEDURE with embedded transactions.

The last batch of changes must run in a transaction that takes a global DML lock on the table. Otherwise you can miss rows that are inserted concurrently into the
table on other nodes.

If required, you can run ALTER TABLE mytable ALTER COLUMN newcolumn NOT NULL; after the UPDATE has finished.

Changing a column's type

Changing a column's type can cause PostgreSQL to rewrite a table. In some cases though this rewriting can be avoided, for example:

You can rewrite this statement to avoid a table rewrite by making the restriction a table constraint rather than a datatype change. The constraint can then be
validated in a subsequent command to avoid long locks, if you want.

If the validation fails, then you can UPDATE just the failing rows. You can use this technique for TEXT and VARCHAR using length() or with NUMERIC

 ALTERALTER TABLETABLE mytable ADDADD COLUMNCOLUMN newcolumn coltype; -- Note the lack of DEFAULT or NOT
NULL

 ALTERALTER TABLETABLE mytable ALTERALTER COLUMNCOLUMN newcolumn DEFAULTDEFAULT
volatile--expression;

 BEGINBEGIN;
 SELECTSELECT bdr.global_lock_table('mytable');
 UPDATEUPDATE mytable SETSET newcolumn == defaultdefault--expression;
 COMMITCOMMIT;

CREATECREATE TABLETABLE foo (idid BIGINT PRIMARYPRIMARY KEYKEY, description
VARCHAR(128));
ALTERALTER TABLETABLE foo ALTERALTER COLUMNCOLUMN description TYPETYPE
VARCHAR(20);

CREATECREATE TABLETABLE foo (idid BIGINT PRIMARYPRIMARY KEYKEY, description
VARCHAR(128));
ALTERALTER TABLETABLE
foo
 ALTERALTER COLUMNCOLUMN description TYPETYPE
varchar,
 ADDADD CONSTRAINTCONSTRAINT description_length_limit CHECKCHECK (length(description) <=<= 20) NOTNOT
VALID;
ALTERALTER TABLETABLE foo VALIDATEVALIDATE CONSTRAINTCONSTRAINT
description_length_limit;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 138

datatype using scale() .

In the general case for changing column type, first add a column of the desired type:

ALTER TABLE mytable ADD COLUMN newcolumn newtype;

Create a trigger defined as BEFORE INSERT OR UPDATE ON mytable FOR EACH ROW .. , which assigns NEW.newcolumn to NEW.oldcolumn so
that new writes to the table update the new column automatically.

UPDATE the table in batches to copy the value of oldcolumn to newcolumn using a PROCEDURE with embedded transactions. Batching the work helps
reduce replication lag if it's a big table. Updating by range of IDs or whatever method you prefer is fine. Alternatively, you can update the whole table in one pass for
smaller tables.

CREATE INDEX ... any required indexes on the new column. It's safe to use CREATE INDEX ... CONCURRENTLY run individually without DDL
replication on each node to reduce lock durations.

ALTER the column to add a NOT NULL and CHECK constraints, if required.

1. BEGIN a transaction.
2. DROP the trigger you added.
3. ALTER TABLE to add any DEFAULT required on the column.
4. DROP the old column.
5. ALTER TABLE mytable RENAME COLUMN newcolumn TO oldcolumn .
6. COMMIT .

NoteNote

Because you're dropping a column, you might have to re-create views, procedures, and so on that depend on the table. Be careful if you CASCADE drop
the column, as you must be sure you re-create everything that referred to it.

Changing other types

The ALTER TYPE statement is replicated, but affected tables aren't locked.

When this DDL is used, ensure that the statement has successfully executed on all nodes before using the new type. You can achieve this using the
bdr.wait_slot_confirm_lsn() function.

This example ensures that the DDL is written to all nodes before using the new value in DML statements:

ALTER TYPE contact_method ADD VALUE 'email';
SELECT bdr.wait_slot_confirm_lsn(NULL, NULL);

12.8 PGD functions that behave like DDL

The following PGD management functions act like DDL. This means that, if DDL replication is active and DDL filter settings allow it, they attempt to take global
locks and their actions are replicate. For detailed information, see the documentation for the individual functions.

Replication set management

bdr.create_replication_set
bdr.alter_replication_set
bdr.drop_replication_set
bdr.replication_set_add_table
bdr.replication_set_remove_table
bdr.replication_set_add_ddl_filter

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 139

bdr.replication_set_remove_ddl_filter

Conflict management

bdr.alter_table_conflict_detection
bdr.column_timestamps_enable
bdr.column_timestamps_disable

Sequence management

bdr.alter_sequence_set_kind

Stream triggers

bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger

13 Security and roles

EDB Postgres Distributed allows a PGD cluster to be administered without giving access to the stored data by design. It achieves this through the use of roles and
controlled access to system objects.

Roles introduces the roles that PGD predefines for controlling access to PGD functionality.

Role management discusses how roles are managed on multi-database nodes and new nodes.

PGD predefined roles details the specific privileges of the PGD roles.

Roles and replication explains how PGD replication interacts with roles and privileges.

Access control explains how tables, functions, catalog objects and triggers interact with PGD roles and Postgres attributes.

13.1 Roles

Configuring and managing PGD doesn't require superuser access. We recommend that you do not use superuser access. Instead, the privileges required to
administer PGD are split across the following predefined roles:

Role Description

bdr_superuserbdr_superuser The highest-privileged role, having access to all PGD tables and functions.

bdr_read_all_statsbdr_read_all_stats The role having read-only access to the tables, views, and functions, sufficient to understand the state of PGD.

bdr_monitorbdr_monitor At the moment, the same as bdr_read_all_stats. To be extended later.

bdr_applicationbdr_application The minimal privileges required by applications running PGD.

bdr_read_all_conflictsbdr_read_all_conflicts Can view all conflicts in bdr.conflict_history .

These roles are named to be analagous to to PostgreSQL's pg_ predefined roles:

The PGD bdr_ roles are created when the BDR extension is installed. See PGD predefined roles for more details of what priviliges each one has.

Managing PGD doesn't require that administrators have access to user data.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 140

https://www.postgresql.org/docs/current/predefined-roles.html

Arrangements for securing conflicts are discussed in Logging conflicts to a table.

You can monitor conflicts using the bdr.conflict_history_summary view.

The BDR extension and superuser accessThe BDR extension and superuser access

The one exception to the rule of not needing superuser access is in the management of PGD's underlying BDR extension. Only superusers can create the
BDR extension. However, if you want, you can set up the pgextwlist extension and configure it to allow a non-superuser to create a BDR extension.

13.2 Role management

Users are global objects in a PostgreSQL instance. A CREATE ROLE command or its alias CREATE USER is replicated automatically if it's executed in a PGD
replicated database. If a role or user is created in a non-PGD, unreplicated database, the role exists only for that PostgreSQL instance. GRANT ROLE and DROP
ROLE work the same way, replicating only if applied to a PGD-replicated database.

NoteNote

Remember that a user in Postgres terms is simply a role with login privileges.

Role rule - No un-replicated roles

If you do create a role or user in a non-PGD, unreplicated database, it's especially important that you do not make an object in the PGD-replicated database rely on
that role. It will break the replication process, as PGD cannot replicate a role that is not in the PGD-replicated database.

You can disable this automatic replication behavior by turning off the bdr.role_replication setting, but we don't recommend that.

Roles for new nodes

New PGD nodes that are added using bdr_init_physical will automatically replicate the roles from other nodes of the PGD cluster.

If a PGD node is joined to a PGD group manually, without using bdr_init_physical , existing roles aren't copied to the newly joined node. This is intentional
behavior to ensure that access isn't accidentally granted.

Roles, by default, have access to all databases. Automatically copying users to a newly created node would therefore open the possibility of unintentionally
exposing a database that exists on the node. If the PGD cluster had a user Alice, and Alice was automatically created on a newly joined node, by directly connecting
to that node, Alice would have access to all the databases on that node. PGD therefore doesn't copy over existing roles. In this situation, we recommend that you
copy over roles manually.

PostgreSQL allows you to dump all roles with the command:

pg_dumpall --roles-only > roles.sql

You can then edit the file roles.sql to remove unwanted users before running the file's commands on the newly created node.

When joining a new node, the “No unreplicated roles” rule also applies. If an object in the database to be replicated relies on an unreplicated role in an
(unreplicated) local database, then the join fails when it attempts to replicate that object.

Connections and roles

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 141

When allocating a new PGD node, the user supplied in the DSN for the local_dsn argument of bdr.create_node and the join_target_dsn of
bdr.join_node_group are used frequently to refer to, create, and manage database objects.

PGD is carefully written to prevent privilege escalation attacks even when using a role with SUPERUSER rights in these DSNs.

To further reduce the attack surface, you can specify a more restricted user in these DSNs. At a minimum, such a user must be granted permissions on all nodes,
such that following stipulations are satisfied:

The user has the REPLICATION attribute.
It's granted the CREATE permission on the database.
It inherits the bdr_superuser role.
It owns all database objects to replicate, either directly or from permissions from the owner roles.

Once all nodes are joined, to continue to allow DML and DDL replication, you can reduce the permissions further to the following:

The user has the REPLICATION attribute.
It inherits the bdr_superuser role.

13.3 PGD predefined roles

PGD predefined roles are created when the BDR extension is installed. After BDR extension is dropped from a database, the roles continue to exist. You need to drop
them manually if dropping is required. This practice allows PGD to be used in multiple databases on the same PostgreSQL instance without problem.

bdr_superuser

ALL PRIVILEGES ON ALL TABLES IN SCHEMA BDR
ALL PRIVILEGES ON ALL ROUTINES IN SCHEMA BDR

bdr_read_all_stats

SELECT privilege on:

bdr.autopartition_partitions
bdr.autopartition_rules
bdr.ddl_epoch
bdr.ddl_replication
bdr.global_consensus_journal_details
bdr.global_lock
bdr.global_locks
bdr.group_camo_details
bdr.local_consensus_state
bdr.local_node_summary
bdr.node
bdr.node_catchup_info
bdr.node_catchup_info_details
bdr.node_conflict_resolvers
bdr.node_group
bdr.node_local_info
bdr.node_peer_progress
bdr.node_replication_rates
bdr.node_slots
bdr.node_summary
bdr.replication_sets
bdr.replication_status
bdr.sequences
bdr.stat_activity

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 142

bdr.stat_relation
bdr.stat_subscription deprecated
bdr.state_journal_details
bdr.subscription
bdr.subscription_summary
bdr.tables
bdr.taskmgr_local_work_queue
bdr.taskmgr_work_queue
bdr.worker_errors deprecated
bdr.workers
bdr.writers
bdr.xid_peer_progress

EXECUTE privilege on:

bdr.bdr_edition deprecated
bdr.bdr_version
bdr.bdr_version_num
bdr.decode_message_payload
bdr.get_consensus_status
bdr.get_decoding_worker_stat
bdr.get_global_locks
bdr.get_min_required_replication_slots
bdr.get_min_required_worker_processes
bdr.get_raft_status
bdr.get_relation_stats
bdr.get_slot_flush_timestamp
bdr.get_sub_progress_timestamp
bdr.get_subscription_stats
bdr.lag_control
bdr.lag_history
bdr.node_catchup_state_name
bdr.node_kind_name
bdr.peer_state_name
bdr.pglogical_proto_version_ranges
bdr.show_subscription_status
bdr.show_workers
bdr.show_writers
bdr.stat_get_activity
bdr.wal_sender_stats
bdr.worker_role_id_name

bdr_monitor

All privileges from bdr_read_all_stats .

Also, SELECT privilege on:

bdr.group_raft_details
bdr.group_replslots_details
bdr.group_subscription_summary
bdr.group_versions_details
bdr.raft_instances

Also, EXECUTE privilege on:

bdr.get_raft_instance_by_nodegroup
bdr.monitor_camo_on_all_nodes
bdr.monitor_group_raft
bdr.monitor_group_versions
bdr.monitor_local_replslots

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 143

bdr.monitor_raft_details_on_all_nodes
bdr.monitor_replslots_details_on_all_nodes
bdr.monitor_subscription_details_on_all_nodes
bdr.monitor_version_details_on_all_nodes
bdr.node_group_member_info

bdr_application

EXECUTE privilege on:

All functions for column_timestamps datatypes
All functions for CRDT datatypes
bdr.alter_sequence_set_kind
bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger
bdr.get_configured_camo_partner
bdr.global_lock_table
bdr.is_camo_partner_connected
bdr.is_camo_partner_ready
bdr.logical_transaction_status
bdr.ri_fkey_trigger
bdr.seq_nextval
bdr.seq_currval
bdr.seq_lastval
bdr.trigger_get_committs
bdr.trigger_get_conflict_type
bdr.trigger_get_origin_node_id
bdr.trigger_get_row
bdr.trigger_get_type
bdr.trigger_get_xid
bdr.wait_for_camo_partner_queue
bdr.wait_slot_confirm_lsn

Many of these functions require additional privileges before you can use them. For example, you must be the table owner to successfully execute
bdr.alter_sequence_set_kind . These additional rules are described with each specific function.

bdr_read_all_conflicts

PGD logs conflicts into the bdr.conflict_history table. Conflicts are visible only to table owners, so no extra privileges are required to read the conflict
history. If it's useful to have a user that can see conflicts for all tables, you can optionally grant the role bdr_read_all_conflicts to that user.

13.4 Roles and replication

DDL and DML replication and users

DDL changes executed by a user are applied as that same user on each node.

DML changes to tables are replicated as the table-owning user on the target node.

By default, PGD will replicate new tables with the same owner across nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 144

Differing Table Ownership

We recommend that that table be owned by the same user on each node, and it's the default behavior, but it can be overriden. In that case, there are some things to
take into account.

Consider a situation where table A is owned by user X on node1 and owned by user Y on node2. If user Y has higher privileges than user X, this might be viewed as a
privilege escalation.

Since nodes can have different use cases, we do allow this scenario. But we also warn against it. If tables have different owners on different nodes, we recommend
that a security administrator help to plan and audit this configuration.

Replication and row-level security

On tables with row-level security policies enabled, changes are replicated without reenforcing policies on apply. This behavior is equivalent to the changes being
applied as NO FORCE ROW LEVEL SECURITY , even if FORCE ROW LEVEL SECURITY is specified. If this isn't what you want, specify a row_filter that
avoids replicating all rows. We recommend but don't enforce that the row security policies on all nodes be identical or at least compatible.

bdr_superuser role and replication

The user bdr_superuser controls replication for PGD and can add or remove any table from any replication set. bdr_superuser doesn't need any privileges over
individual tables, nor do we recommend it. If you need to restrict access to replication set functions, you can implement restricted versions of these functions as
SECURITY DEFINER functions and grant them to the appropriate users.

Privilege restrictions

PGD enforces additional restrictions, effectively preventing the use of DDL that relies solely on TRIGGER or REFERENCES privileges.

GRANT ALL still grants both TRIGGER and REFERENCES privileges, so we recommend that you state privileges explicitly. For example, use GRANT SELECT,
INSERT, UPDATE, DELETE, TRUNCATE instead of ALL .

Foreign key privileges

ALTER TABLE ... ADD FOREIGN KEY is supported only if the user has SELECT privilege on the referenced table or if the referenced table has RLS
restrictions enabled that the current user can't bypass.

This means that the REFERENCES privilege alone isn't sufficient to allow creating a foreign key with PGD. Relying solely on the REFERENCES privilege isn't typically
useful since it makes the validation check execute using triggers rather than a table scan. It's typically too expensive to use successfully.

13.5 Access control

Catalog tables

System catalog and information schema tables are always excluded from replication by PGD.

In addition, tables owned by extensions are excluded from replication.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 145

PGD functions and operators

All PGD functions are exposed in the bdr schema. Any calls to these functions must be schema qualified, rather than putting bdr in the search_path.

All PGD operators are available by way of the pg_catalog schema to allow users to exclude the public schema from the search_path without problems.

Granting privileges on catalog objects

Administrators must not grant explicit privileges on catalog objects such as tables, views, and functions. Manage access to those objects by granting one of the
roles described in PGD default roles.

This requirement is a consequence of the flexibility that allows joining a node group even if the nodes on either side of the join don't have the exact same version of
PGD and therefore of the PGD catalog.

More precisely, if privileges on individual catalog objects were explicitly granted, then the bdr.join_node_group() procedure might fail because the
corresponding GRANT statements extracted from the node being joined might not apply to the node that's joining.

Triggers

In PostgreSQL, both the owner of a table and anyone who was granted the TRIGGER privilege can create triggers. Triggers granted by the non-table owner execute
as the table owner in PGD, which might cause a security issue. The TRIGGER privilege is seldom used, and PostgreSQL Core Team has said, "The separate TRIGGER
permission is something we consider obsolescent."

PGD mitigates this problem by using stricter rules on who can create a trigger on a table:

superuser: Can create trigggers.

bdr_superuser: Can create triggers.

Owner of the table: Can create triggers according to same rules as in PostgreSQL (must have EXECUTE privilege on the function used by the trigger).

Users who have TRIGGER privilege on the table: Can create a trigger only if they use a function that's owned by the same owner as the table and they satisfy
standard PostgreSQL rules. Specifically, they must have EXECUTE privilege on the function.

If both table and function have the same owner, and the owner decides to give a user both TRIGGER privilege on the table and EXECUTE privilege on thae
function. It's assumed that it's okay for that user to create a trigger on that table using this function.

Users who have TRIGGER privilege on the table: Can also create triggers using functions that are defined with the SECURITY DEFINER clause if they have
EXECUTE privilege on them.

The SECURITY DEFINER clause makes the function always execute as the owner of the function both in standard PostgreSQL and PGD.

This logic is built on the fact that, in PostgreSQL, the owner of the trigger isn't the user who created it but the owner of the function used by that trigger.

The same rules apply to existing tables, and if the existing table has triggers that aren't owned by the owner of the table and don't use SECURITY DEFINER functions,
you can't add it to a replication set.

When PGD replication applies changes it uses the system-level default search_path only. Replica triggers, stream triggers, and index expression functions that
assume other search_path settings will then fail when they execute on apply. To ensure this doesn't occur, resolve object references clearly using either the default
search_path only, or set the search path for a function using ALTER FUNCTION ... SET search_path = ... for the functions affected. When using the
default search_path, always use fully qualified references to objects, for example, schema.objectname.

14 Sequences

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 146

https://www.postgresql.org/docs/current/sql-createfunction.html#SQL-CREATEFUNCTION-SECURITY

Many applications require that unique surrogate ids be assigned to database entries. Often the database SEQUENCE object is used to produce these. In
PostgreSQL, these can be either:

A manually created sequence using the CREATE SEQUENCE command and retrieved by calling the nextval() function
serial and bigserial columns or, alternatively, GENERATED BY DEFAULT AS IDENTITY columns

However, standard sequences in PostgreSQL aren't multi-node aware and produce values that are unique only on the local node. This is important because unique
ids generated by such sequences cause conflict and data loss by means of discarded INSERT actions in multi-master replication.

Permissions RequiredPermissions Required

PGD global sequences are on by default. This means that for any user to use sequences, the user must have at least the bdr_application role assigned to
them.

PGD global sequences

For this reason, PGD provides an application-transparent way to generate unique ids using sequences on bigint or bigserial datatypes across the whole PGD group,
called global sequences.

PGD global sequences provide an easy way for applications to use the database to generate unique synthetic keys in an asynchronous distributed system that works
for most—but not necessarily all—cases.

Using PGD global sequences allows you to avoid the problems with insert conflicts. If you define a PRIMARY KEY or UNIQUE constraint on a column that's using
a global sequence, no node can ever get the same value as any other node. When PGD synchronizes inserts between the nodes, they can never conflict.

PGD global sequences extend PostgreSQL sequences, so they are crash-safe. To use them, you must be granted the bdr_application role.

There are various possible algorithms for global sequences:

SnowflakeId sequences
Globally allocated range sequences

SnowflakeId sequences generate values using an algorithm that doesn't require inter-node communication at any point. It's faster and more robust and has the
useful property of recording the timestamp when the values were created.

SnowflakeId sequences have the restriction that they work only for 64-bit BIGINT datatypes and produce values up to 19 digits long, which might be too long for use
in some host language datatypes, such as Javascript Integer types. Globally allocated sequences allocate a local range of values that can be replenished as needed
by inter-node consensus, making them suitable for either BIGINT or INTEGER sequences.

You can create a global sequence using the bdr.alter_sequence_set_kind() function. This function takes a standard PostgreSQL sequence and marks it
as a PGD global sequence. It can also convert the sequence back to the standard PostgreSQL sequence.

PGD also provides the configuration variable bdr.default_sequence_kind , which determines the kind of sequence to create when the CREATE
SEQUENCE command is executed or when a serial , bigserial , or GENERATED BY DEFAULT AS IDENTITY column is created. Valid settings are:

local , meaning that newly created sequences are the standard PostgreSQL (local) sequences.
galloc , which always creates globally allocated range sequences.
snowflakeid , which creates global sequences for BIGINT sequences that consist of time, nodeid, and counter components. You can't use it with INTEGER

sequences (so you can use it for bigserial but not for serial).
timeshard , which is the older version of SnowflakeId sequence and is provided for backward compatibility only. The SnowflakeId is preferred.
distributed (the default), which is a special value that you can use only for bdr.default_sequence_kind . It selects snowflakeid for int8

sequences (that is, bigserial) and galloc sequence for int4 (that is, serial) and int2 sequences.

The bdr.sequences view shows information about individual sequence kinds.

currval() and lastval() work correctly for all types of global sequence.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 147

SnowflakeId sequences

The ids generated by SnowflakeId sequences are loosely time ordered so you can use them to get the approximate order of data insertion, like standard PostgreSQL
sequences. Values generated within the same millisecond might be out of order, even on one node. The property of loose time ordering means they're suitable for
use as range partition keys.

SnowflakeId sequences work on one or more nodes and don't require any inter-node communication after the node-join process completes. So you can continue to
use them even if there's the risk of extended network partitions. They aren't affected by replication lag or inter-node latency.

SnowflakeId sequences generate unique ids in a different way from standard sequences. The algorithm uses three components for a sequence number. The first
component of the sequence is a timestamp at the time of sequence number generation. The second component of the sequence number is the unique id assigned to
each PGD node, which ensures that the ids from different nodes are always different. The third component is the number generated by the local sequence.

While adding a unique node id to the sequence number is enough to ensure there are no conflicts, you also want to keep another useful property of sequences. The
ordering of the sequence numbers roughly corresponds to the order in which data was inserted into the table. Putting the timestamp first ensures this.

A few limitations and caveats apply to SnowflakeId sequences.

SnowflakeId sequences are 64 bits wide and need a bigint or bigserial . Values generated are up to 19 digits long. There's no practical 32-bit integer
version, so you can't use it with serial sequences. Use globally allocated range sequences instead.

For SnowflakeId, there's a limit of 4096 sequence values generated per millisecond on any given node (about 4 million sequence values per second). In case the
sequence value generation wraps around within a given millisecond, the SnowflakeId sequence waits until the next millisecond and gets a fresh value for that
millisecond.

Since SnowflakeId sequences encode timestamps into the sequence value, you can generate new sequence values only within the given time frame (depending on
the system clock). The oldest timestamp that you can use is 2016-10-07, which is the epoch time for the SnowflakeId. The values wrap to negative values in the year
2086 and completely run out of numbers by 2156.

Since timestamp is an important part of a SnowflakeId sequence, there's additional protection from generating sequences with a timestamp older than the latest
one used in the lifetime of a Postgres process (but not between Postgres restarts).

The INCREMENT option on a sequence used as input for SnowflakeId sequences is effectively ignored. This might be relevant for applications that do sequence ID
caching, like many object-relational mapper (ORM) tools, notably Hibernate. Because the sequence is time based, this has little practical effect since the sequence
advances to a new noncolliding value by the time the application can do anything with the cached values.

Similarly, you might change the START , MINVALUE , MAXVALUE , and CACHE settings on the underlying sequence, but there's no benefit to doing so. The
sequence's low 14 bits are used and the rest is discarded, so the value-range limits don't affect the function's result. For the same reason, setval() isn't useful
for SnowflakeId sequences.

Timeshard sequences

Timeshard sequences are provided for backward compatibility with existing installations but aren't recommended for new application use. We recommend using the
SnowflakeId sequence instead.

Timeshard is very similar to SnowflakeId but has different limits and fewer protections and slower performance.

The differences between timeshard and SnowflakeId are as following:

Timeshard can generate up to 16384 per millisecond (about 16 million per second), which is more than SnowflakeId. However, there's no protection against
wraparound within a given millisecond. Schemas using the timeshard sequence must protect the use of the UNIQUE constraint when using timeshard
values for given column.
The timestamp component of timeshard sequence runs out of values in the year 2050 and, if used in combination with bigint, the values wrap to negative
numbers in the year 2033. This means that sequences generated after 2033 have negative values. This is a considerably shorter time span than SnowflakeId
and is the main reason why SnowflakeId is preferred.
Timeshard sequences require occasional disk writes (similar to standard local sequences). SnowflakeIds are calculated in memory so the SnowflakeId
sequences are in general a little faster than timeshard sequences.

Globally allocated range sequences

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 148

The globally allocated range (or galloc) sequences allocate ranges (chunks) of values to each node. When the local range is used up, a new range is allocated
globally by consensus amongst the other nodes. This uses the key space efficiently but requires that the local node be connected to a majority of the nodes in the
cluster for the sequence generator to progress when the currently assigned local range is used up.

Unlike SnowflakeId sequences, galloc sequences support all sequence data types provided by PostgreSQL: smallint , integer , and bigint . This means
that you can use galloc sequences in environments where 64-bit sequences are problematic. Examples include using integers in javascript, since that supports
only 53-bit values, or when the sequence is displayed on output with limited space.

The range assigned by each voting is currently predetermined based on the datatype the sequence is using:

smallint — 1 000 numbers
integer — 1 000 000 numbers
bigint — 1 000 000 000 numbers

Each node allocates two chunks of seq_chunk_size, one for the current use plus a reserved chunk for future usage, so the values generated from any one node
increase monotonically. However, viewed globally, the values generated aren't ordered at all. This might cause a loss of performance due to the effects on b-tree
indexes and typically means that generated values aren't useful as range-partition keys.

The main downside of the galloc sequences is that, once the assigned range is used up, the sequence generator has to ask for consensus about the next range
for the local node that requires inter-node communication. This might lead to delays or operational issues if the majority of the PGD group isn't accessible. (This
might be avoided in later releases.)

The CACHE , START , MINVALUE , and MAXVALUE options work correctly with galloc sequences. However, you need to set them before transforming the
sequence to the galloc kind. The INCREMENT BY option also works correctly. However, you can't assign an increment value that's equal to or more than the
above ranges assigned for each sequence datatype. setval() doesn't reset the global state for galloc sequences; don't use it.

A few limitations apply to galloc sequences. PGD tracks galloc sequences in a special PGD catalog bdr.sequence_alloc. This catalog is required to track the
currently allocated chunks for the galloc sequences. The sequence name and namespace is stored in this catalog. Since the sequence chunk allocation is
managed by Raft, whereas any changes to the sequence name/namespace is managed by the replication stream, PGD currently doesn't support renaming galloc
sequences or moving them to another namespace or renaming the namespace that contains a galloc sequence. Be mindful of this limitation while designing
application schema.

Converting a local sequence to a galloc sequence

Before transforming a local sequence to galloc, you need to take care of several prerequisites.

1. Verify that sequence and column data type match

Check that the sequence's data type matches the data type of the column with which it will be used. For example, you can create a bigint sequence and assign an
integer column's default to the nextval() returned by that sequence. With galloc sequences, which for bigint are allocated in blocks of 1 000 000 000,

this quickly results in the values returned by nextval() exceeding the int4 range if more than two nodes are in use.

The following example shows what can happen:

CREATECREATE SEQUENCESEQUENCE int8_seq;

SELECTSELECT sequencename, data_type FROMFROM pg_sequences;
 sequencename |
data_type
--------------+-----------
 int8_seq |
bigint
(1 rowrow)

CREATECREATE TABLETABLE seqtest (idid INT NOTNOT NULLNULL PRIMARYPRIMARY
KEYKEY);

ALTERALTER SEQUENCESEQUENCE int8_seq OWNED BYBY
seqtest.idid;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 149

After executing INSERT INTO seqtest VALUES(DEFAULT) on two nodes, the table contains the following values:

However, attempting the same operation on a third node fails with an integer out of range error, as the sequence generated the value 4000000002 .

TipTip

You can retrieve the current data type of a sequence from the PostgreSQL pg_sequences view. You can modify the data type of a sequence with ALTER
SEQUENCE ... AS ... , for example, ALTER SEQUENCE public.sequence AS integer , as long as its current value doesn't exceed the
maximum value of the new data type.

2. Set a new start value for the sequence

When the sequence kind is altered to galloc , it's rewritten and restarts from the defined start value of the local sequence. If this happens on an existing
sequence in a production database, you need to query the current value and then set the start value appropriately. To help with this use case, PGD allows users to
pass a starting value with the function bdr.alter_sequence_set_kind() . If you're already using offset and you have writes from multiple nodes, you need
to check what's the greatest used value and restart the sequence to at least the next value.

Since users can't lock a sequence, you must leave a $MARGIN value to allow operations to continue while the max() value is queried.

The bdr.sequence_alloc table gives information on the chunk size and the ranges allocated around the whole cluster.

In this example, the sequence starts at 333 , and the cluster has two nodes. The number of allocation is 4, which is 2 per node, and the chunk size is 1000000
that's related to an integer sequence.

SELECTSELECT bdr.alter_sequence_set_kind('public.int8_seq'::regclass, 'galloc', 1);
 alter_sequence_set_kind

(1 rowrow)

ALTERALTER TABLETABLE seqtest ALTERALTER COLUMNCOLUMN idid SETSET DEFAULTDEFAULT
nextval('int8_seq'::regclass);

SELECTSELECT ** FROMFROM
seqtest;
 idid

 2
 2000000002
(2 rowsrows)

-- determine highest sequence value across all
nodes
SELECTSELECT max((x->->'response'->->'command_tuples'->->0->>->>'nextval')::bigint)
 FROMFROM json_array_elements(

bdr.run_on_all_nodes(
 E'SELECT
nextval(\'public.sequencesequence\');'
)::jsonb ASAS x;

-- turn into a galloc
sequence
SELECTSELECT bdr.alter_sequence_set_kind('public.sequence'::regclass, 'galloc', $MAX ++ $MARGIN);

SELECTSELECT ** FROMFROM bdr.sequence_alloc
 WHEREWHERE seqid == 'public.categories_category_seq'::regclass;
 seqid | seq_chunk_size | seq_allocated_up_to | seq_nallocs |
seq_last_alloc
-------------------------+----------------+---------------------+-------------+-----------------------------
 categories_category_seq | 1000000 | 4000333 | 4 | 2020--05--21
20:02:15.957835++00
(1 rowrow)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 150

https://www.postgresql.org/docs/current/view-pg-sequences.html

To see the ranges currently assigned to a given sequence on each node, use these queries:

Node Node1 is using range from 333 to 2000333 .

Node Node2 is using range from 2000004 to 4000003 .

NoteNote

You can't combine it to a single query (like WHERE ctid IN ('(0,2)', '(0,3)')), as that still shows only the first range.

When a node finishes a chunk, it asks a consensus for a new one and gets the first available. In the example, it's from 4000334 to 5000333. This is the new reserved
chunk and starts to consume the old reserved chunk.

UUIDs, KSUUIDs, and other approaches

You can generate globally unique ids in other ways without using the global sequences that can be used with PGD. For example:

UUIDs and their PGD variant, KSUUIDs
Local sequences with a different offset per node (i.e., manual)
An externally coordinated natural key

PGD applications can't use other methods safely: counter-table-based approaches relying on SELECT ... FOR UPDATE , UPDATE ... RETURNING ...
or similar for sequence generation doesn't work correctly in PGD because PGD doesn't take row locks between nodes. The same values are generated on more than
one node. For the same reason, the usual strategies for "gapless" sequence generation don't work with PGD. In most cases, the application coordinates generating
sequences that must be gapless from some external source using two-phase commit. Or it generates them only on one node in the PGD group.

SELECTSELECT last_value ASAS range_start, log_cnt ASAS range_end
 FROMFROM categories_category_seq WHEREWHERE ctid == '(0,2)'; -- first range
 range_start |
range_end
-------------+-----------
 334 |
1000333
(1 rowrow)

SELECTSELECT last_value ASAS range_start, log_cnt ASAS range_end
 FROMFROM categories_category_seq WHEREWHERE ctid == '(0,3)'; -- second
range
 range_start |
range_end
-------------+-----------
 1000334 |
2000333
(1 rowrow)

SELECTSELECT last_value ASAS range_start, log_cnt ASAS range_end
 FROMFROM categories_category_seq WHEREWHERE ctid == '(0,2)'; -- first range
 range_start |
range_end
-------------+-----------
 2000334 |
3000333
(1 rowrow)

SELECTSELECT last_value ASAS range_start, log_cnt ASAS range_end
 FROMFROM categories_category_seq WHEREWHERE ctid == '(0,3)'; -- second
range
 range_start |
range_end
-------------+-----------
 3000334 |
4000333

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 151

UUIDs

UUID keys instead avoid sequences entirely and use 128-bit universal unique identifiers. These are random or pseudorandom values that are so large that it's
nearly impossible for the same value to be generated twice. There's no need for nodes to have continuous communication when using UUID keys.

In the unlikely event of a collision, conflict detection chooses the newer of the two inserted records to retain. Conflict logging, if enabled, records such an event.
However, it's exceptionally unlikely to ever occur, since collisions become practically likely only after about 2^64 keys are generated.

The main downside of UUID keys is that they're somewhat inefficient in terms of space and the network. They consume more space not only as a primary key but
also where referenced in foreign keys and when transmitted on the wire. Also, not all applications cope well with UUID keys.

KSUUIDs

PGD provides functions for working with a K-Sortable variant of UUID data, known as KSUUID, which generates values that can be stored using the PostgreSQL
standard UUID data type. A KSUUID value is similar to UUIDv1 in that it stores both timestamp and random data, following the UUID standard. The difference
is that KSUUID is K-Sortable, meaning that it's weakly sortable by timestamp. This makes it more useful as a database key, as it produces more compact btree
indexes, which improves the effectiveness of search, and allows natural time-sorting of result data. Unlike UUIDv1 , KSUUID values don't include the MAC of the
computer on which they were generated, so there are no security concerns from using them.

We now recommend KSUUID v2 in all cases. You can directly sort values generated with regular comparison operators.

There are two versions of KSUUID in PGD: v1 and v2. The legacy KSUUID v1 is deprecated but is kept to support existing installations. Don't use it for new
installations. The internal contents of v1 and v2 aren't compatible. As such, the functions to manipulate them also aren't compatible. The v2 of KSUUID also no
longer stores the UUID version number.

See KSUUID v2 functions and KSUUID v1 functions in the PGD reference.

Step and offset sequences

In offset-step sequences, a normal PostgreSQL sequence is used on each node. Each sequence increments by the same amount and starts at differing offsets. For
example, with step 1000, node1's sequence generates 1001, 2001, 3001, and so on. node2's sequence generates 1002, 2002, 3002, and so on. This scheme works
well even if the nodes can't communicate for extended periods. However, the designer must specify a maximum number of nodes when establishing the schema,
and it requires per-node configuration. Mistakes can easily lead to overlapping sequences.

It's relatively simple to configure this approach with PGD by creating the desired sequence on one node, like this:

CREATE TABLE some_table (
 generated_value bigint primary key
);

CREATE SEQUENCE some_seq INCREMENT 1000 OWNED BY some_table.generated_value;

ALTER TABLE some_table ALTER COLUMN generated_value SET DEFAULT nextval('some_seq');

Then, on each node calling setval() , give each node a different offset starting value, for example:

-- On node 1
SELECT setval('some_seq', 1);

-- On node 2
SELECT setval('some_seq', 2);

 -- ... etc

Be sure to allow a large enough INCREMENT to leave room for all the nodes you might ever want to add, since changing it in the future is difficult and disruptive.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 152

If you use bigint values, there's no practical concern about key exhaustion, even if you use offsets of 10000 or more. It would take hundreds of years, with
hundreds of machines, doing millions of inserts per second, to have any chance of approaching exhaustion.

PGD doesn't currently offer any automation for configuring the per-node offsets on such step/offset sequences.

Composite keys

A variant on step/offset sequences is to use a composite key composed of PRIMARY KEY (node_number, generated_value) , where the node number is
usually obtained from a function that returns a different number on each node. You can create such a function by temporarily disabling DDL replication and
creating a constant SQL function. Alternatively, you can use a one-row table that isn't part of a replication set to store a different value in each node.

See also

Global Sequence management interfaces
KSUUID v2 functions
KSUUID v1 functions

15 Durability

EDB Postgres Distributed (PGD) offers a range of synchronous modes to complement its default asynchronous replication. These synchronous modes are configured
through commit scopes: rules that define how operations are handled and when the system should consider a transaction committed.

Introducing

Overview introduces the concepts and some of the essential terminology that's used when discussing synchronous commits.

Durability terminology lists terms used around PGD's durability options, including how nodes are referred to in replication.

Commit scopes is a more in-depth look at the structure of commit scopes and how to define them for your needs.

Commit scope rules looks at the syntax of and how to formulate a commit scope rule.

Comparing compares how each option behaves.

Commit scope kinds

Group Commit focuses on the Group Commit option, where you can define a transaction as done when a group of nodes agrees it's done.

CAMO focuses on the Commit At Most Once option, in which applications take responsibility for verifying that a transaction has been committed before
retrying. This ensures that their commits only happen at most once.

Lag Control looks at the commit scope mechanism which dynamically throttle nodes according to the slowest node and regulates how far out of sync nodes
may go when a database node goes out of service.

Synchronous Commit examines a commit scope mechanism which works in a similar fashion to legacy synchronous replication, but from within the commit
scope framework.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 153

Working with commit scopes

Administering addresses how a PGD cluster with Group Commit in use should be managed.

Limitations lists the various combinations of durability options which are not currently supported or not possible. Do refer to this before deciding on a
durability strategy.

Legacy Synchronous Replication shows how traditional Postgres synchronous operations can still be accessed under PGD.

Internal timing of operations compares legacy replication with PGD's async and synchronous operations, especially the difference in the order by which
transactions are flushed to disk or made visible.

15.1 An overview of durability options

Overview

EDB Postgres Distributed (PGD) allows you to choose from several replication configurations based on your durability, consistency, availability, and performance
needs using commit scopes.

In its basic configuration, PGD uses asynchronous replication. However, commit scopes can change both the default and the per-transaction behavior.

It's also possible to configure the legacy Postgres synchronous replication using standard synchronous_standby_names in the same way as the built-in
physical or logical replication. However, commit scopes provide much more flexibility and control over the replication behavior.

The different synchronization settings affect three properties of interest to applications that are related but can all be implemented individually:

Durability: Writing to multiple nodes increases crash resilience and allows you to recover the data after a crash and restart.

Visibility: With the commit confirmation to the client, the database guarantees immediate visibility of the committed transaction on some sets of nodes.

Conflict handling: Conflicts can be handled optimistically postcommit, with conflicts resolved when the transaction is replicated based on commit
timestamps. Or, they can be handled pessimistically precommit. The client can rely on the transaction to eventually be applied on all nodes without further
conflicts or get an abort, directly informing the client of an error.

Commit scopes allow four kinds of controlling durability of the transaction:

Group Commit: This kind of commit scope controls which and how many nodes have to reach a consensus before the transaction is considered to be
committable and at what stage of replication it can be considered committed. This option also allows you to control the visibility ordering of the transaction.

CAMO: This kind of commit scope is a variant of Group Commit in which the client takes on the responsibility for verifying that a transaction has been
committed before retrying.

Lag Control: This kind of commit scope controls how far behind nodes can be in terms of replication before allowing commit to proceed.

PGD Synchronous Commit: This kind of commit scope allows for a behaviour where the origin node awaits a majority of nodes to confirm and behaves more
like a native Postgres synchronous commit.

Legacy synchronization availabilityLegacy synchronization availability

For backward compatibility, PGD still supports configuring synchronous replication with synchronous_commit and
synchronous_standby_names . See Legacy synchronous replication for more on this option. We recommend users instead use PGD

Synchronous_Commit.

15.2 Durability terminology

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 154

Durability terminology

This page covers terms and definitions directly related to PGD's durability options. For other terms, see the main Terminology section.

Nodes

PGD nodes take different roles during the replication of a transaction. These are implicitly assigned per transaction and are unrelated even for concurrent
transactions.

The origin is the node that receives the transaction from the client or application. It's the node processing the transaction first, initiating replication to other
PGD nodes and responding back to the client with a confirmation or an error.

The origin node group is a PGD group which includes the origin.

A partner node is a PGD node expected to confirm transactions according to Group Commit requirements.

A commit group is the group of all PGD nodes involved in the commit, that is, the origin and all of its partner nodes, which can be just a few or all peer nodes.

15.3 Commit scopes

Commit scopes give applications granular control about durability and consistency of EDB Postgres Distributed.

A commit scope is a set of rules that describes the behavior of the system as transactions are committed. The actual behavior depends on which a kind of commit
scope a commit scope's rule uses Group Commit, Commit At Most Once, Lag Control, Synchronous Commit or combination of these.

While most commit scope kinds control the processing of the transaction, Lag Control is the exception as it dynamically regulates the performance of the system in
response to replication operations being slow or queued up. It is typically used, though, in combination with other commit scope kinds

Commit scope structure

Every commit scope has a name (a commit_scope_name).

Each commit scope has one or more rules.

Each rule within the commit scope has an origin_node_group which together uniquely identify the commit scope rule.

The origin_node_group is a PGD group and it defines the nodes which will apply this rule when they are the originators of a transaction.

Finally there is the rule which defines what kind of commit scope or combination of commit scope kinds should be applied to those transactions.

So if a commit scope has a rule that reads:

origin_node_group := 'example_bdr_group',
rule := 'MAJORITY (example_bdr_group) GROUP COMMIT',

Then, the rule is applied when any node in the example_bdr_group issues a transaction.

The rule itself specifies how many nodes of a specified group will need to confirm the change - MAJORITY (example_bdr_group) - followed by the commit
scope kind itself - GROUP COMMIT . This translates to requiring that any two nodes in example_bdr_group must confirm the change before the change can be
considered as comitted.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 155

How a commit scope is selected

When any change takes place, PGD looks up which commit scope is should be used for the transaction or node.

If a transaction specifies a commit scope, that scope will be used.

If not specified, the system will search for a default commit scope. Default commit scopes are a group level setting. The system consults the group tree. Starting at
the bottom of the group tree with the node's group and working up, it searches for any group which has a default_commit_scope setting defined. This commit scope
will then be used.

If no default_commit_scope is found then the node's GUC, bdr.commit_scope is used. And if that isn't set or is set to local then no commit scope applies and
PGD's async replication is used.

A commit scope will not be used if it is not local and the node where the commit is being run on is not directly or indirectly related to the origin_node_group.

Creating a Commit Scope

Use bdr.add_commit_scope to add our example rule to a commit scope. For example:

This will add the rule MAJORITY (example_bdr_group) GROUP COMMIT for any transaction originating from the example_bdr_group to a scope
called example_scope .

If no rules previously existed in example_scope , then adding this rule would make the scope exist.

When a rule is added, the origin_node_group must already exist. If it does not, the whole add operation will be discarded with an error.

The rule will then be evaluated. If the rule mentions groups that don't exist or the settings on the group are incompatible with other configuration setting on the
group's nodes, a warning will be emitted, but the rule will be added.

Once the rule is added, the commit scope will be available for use.

The wait_for_ready controls whether the bdr.add_commit_scope() call blocks until the rule has been added to the relevant nodes. The setting defaults
to true and can be omitted.

Using a commit scope

To use our example scope, we can set bdr.commit_scope within a transaction

You must set the commit scope before the transaction writes any data.

SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'example_scope',
 origin_node_group :=:= 'example_bdr_group',
 rulerule :=:= 'MAJORITY (example_bdr_group) GROUP
COMMIT',
 wait_for_ready :=:=
truetrue
);

BEGINBEGIN;
SETSET LOCALLOCAL bdr.commit_scope ==
'example_scope';
.....
COMMITCOMMIT;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 156

You can set a commit scope as a default for a group or subgroup using bdr.alter_node_group_option :

To completely clear the default for a group or subgroup, set the default_commit_scope value to local :

You can also make this change using PGD CLI:

pgd set-group-options example-bdr-group --option default_commit_scope=example_scope

And you can clear the default using PGD CLI by setting the value to local :

pgd set-group-options example-bdr-group --option default_commit_scope=local

Finally, you can set the default commit_scope for a node using:

Set bdr.commit_scope to local to use the PGD default async replication.

Origin groups

Rules for commit scopes can depend on the node the transaction is committed on, that is, the node that acts as the origin for the transaction. To make this
transparent for the application, PGD allows a commit scope to define different rules depending on where the transaction originates from.

For example, consider an EDB Postgres Distributed cluster with nodes spread across two data centers: a left and a right one. Assume the top-level PGD node group
is called top_group . You can use the following commands to set up subgroups and create a commit scope requiring all nodes in the local data center to confirm
the transaction but only one node from the remote one:

SELECTSELECT bdr.alter_node_group_option(
 node_group_name :=:= 'example_bdr_group',
 config_key :=:= 'default_commit_scope',
 config_value :=:= 'example_scope'
);

SELECTSELECT bdr.alter_node_group_option(
 node_group_name :=:= 'example_bdr_group',
 config_key :=:= 'default_commit_scope',
 config_value :=:= 'local'
);

SETSET bdr.commit_scope ==
'example_scope';

-- create sub-
groups
SELECTSELECT bdr.create_node_group(
 node_group_name :=:= 'left_dc',
 parent_group_name :=:= 'top_group',
 join_node_group :=:= falsefalse
);
SELECTSELECT bdr.create_node_group(
 node_group_name :=:= 'right_dc',
 parent_group_name :=:= 'top_group',
 join_node_group :=:= falsefalse
);

-- create a commit scope with individual
rules
-- for each sub-
group
SELECTSELECT
bdr.add_commit_scope(

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 157

Now, using the example_scope on any node that's part of left_dc uses the first scope. Using the same scope on a node that's part of right_dc uses the
second scope. By combining the left_dc and right_dc origin rules under one commit scope name, an application can simply use example_scope on
either data center and get the appropriate behavior for that data center.

Each group can also have a default commit scope specified using the bdr.alter_node_group_option admin interface.

Making the above scopes the default ones for all transactions originating on nodes in those groups looks like this:

15.4 Commit scope rules

Commit scope rules are at the core of the commit scope mechanism. They define what the commit scope will enforce.

Commit scope rules are composed of one or more operations combined with an AND .

Each operation is made up of two (or three) parts, the commit scope group, an optional confirmation level, and the kind of commit scope (which may have it's own
parameters).

commit_scope_group [confimation_level] commit_scope_kind

A full formal syntax diagram is available in the commit scope reference section..

If we look at a typical commit scope rule, we can now break it down into its components:

ANY 2 (group) GROUP COMMIT

The ANY 2 (group) is the commit scope group, specifying, for the rule, of which nodes need to respond, confirming they have processed the transaction.
Specifically, here, any two nodes from the named group must confirm.

There is no confirmation level here, but that only means that the default is used. You can think of the rule in full as:

 commit_scope_name :=:= 'example_scope',
 origin_node_group :=:= 'left_dc',
 rulerule :=:= 'ALL (left_dc) GROUP COMMIT (commit_decision=raft) AND ANY 1 (right_dc) GROUP
COMMIT',
 wait_for_ready :=:=
truetrue
);
SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'example_scope',
 origin_node_group :=:= 'right_dc',
 rulerule :=:= 'ANY 1 (left_dc) GROUP COMMIT AND ALL (right_dc) GROUP COMMIT
(commit_decision=raft)',
 wait_for_ready :=:=
truetrue
);

SELECTSELECT bdr.alter_node_group_option(
 node_group_name :=:= 'left_dc',
 config_key :=:= 'default_commit_scope',
 config_value :=:= 'example_scope'
);
SELECTSELECT bdr.alter_node_group_option(
 node_group_name :=:= 'right_dc',
 config_key :=:= 'default_commit_scope',
 config_value :=:= 'example_scope'
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 158

ANY 2 (group) ON visible GROUP COMMIT

The visible setting means the nodes are able to confirm once the all the transaction's changes are flushed to disk and visible to other transactions.

The last part of this operation is the commit scope kind, which here is GROUP COMMIT , a synchronous two-phase commit which will be confirmed when any two
nodes in the named group confirm they have flushed and made visible the transactions changes.

The commit scope group

There are three kinds of commit scope group, ANY , ALL and MAJORITY . They are all followed by a parenthesized list of one or more groups, which combine to
make a pool of nodes that this operation will apply to. This list can be preceded by NOT which inverts to pool to all other groups apart from those in the list.
Witness nodes are not eligible to be included in this pool as they do not replicate data.

ANY n — is followed by an integer value, "n". It translates to any "n" nodes in the listed groups nodes.
ALL — is followed by the groups and translates to all nodes in the listed groups nodes.
MAJORITY — is followed by the groups and translates to requiring a half, plus one, of the listed groups nodes to confirm to give a majority.
ANY n NOT — is followed by an integer value, "n". It translates to any "n" nodes that are not in the listed groups nodes.
ALL NOT — is followed by the groups and translates to all nodes that are not in the listed group's nodes.
MAJORITY NOT — is followed by the groups and translates to requiring a half, plus one, of the nodes that are not in the listed groups nodes to confirm to

give a majority.

The confirmation Level

PGD nodes can send confirmations for a transaction at different times. In increasing levels of protection, from the perspective of the confirming node, these are:

received — A remote PGD node confirms the transaction immediately after receiving it, prior to starting the local application.
replicated — Confirms after applying changes of the transaction but before flushing them to disk.
durable — Confirms the transaction after all of its changes are flushed to disk.
visible (default) — Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

In rules for commit scopes, you can append these confirmation levels to the node group definition in parentheses with ON as follows:

ANY 2 (right_dc) ON replicated
ALL (left_dc) ON visible (default)
ALL (left_dc) ON received AND ANY 1 (right_dc) ON durable

NoteNote

If you are familiar with Postgresql's synchronous_standby_names feature, be aware that while the grammar for
synchronous_standby_names and commit scopes can look similar, there is a subtle difference. The former doesn't account for the origin node, but

the latter does. For example synchronous_standby_names = 'ANY 1 (..)' is equivalent to a commit scope of ANY 2 (...) . This
difference makes reasoning about majority easier and reflects that the origin node also contributes to the durability and visibility of the transaction.

The Commit Scope kind

There are, currently, four commit scope kinds. Each of them has their own page, so we'll be summarizing and linking to them here:

GROUP COMMIT

Group commit is a synchronous two-phase commit which will be confirmed according to the requirements of the commit scope group. GROUP COMMIT has a

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 159

number of options which control whether transactions should be tracked over interruptions (boolean, defaults to off), how conflicts should be resolved (async or
eager , defaults to async) and how a consensus is obtained (group , partner or raft , defaults to group).

For further details see GROUP COMMIT .

CAMO

Camo, Commit At Most Once, allows the client/application, origin node and partner node to ensure that a transaction is committed to the database at most once.
Because the client is involved in the process, the application will require modifications to participate in the CAMO process.

For further details see CAMO .

LAG CONTROL

With Lag control, when the system's replication performance exceeds specified limits, a commit delay can be automatically injected into client interaction with the
database, providing a back pressure on clients. Lag control has parameters to set the maximum commit delay that can be exerted, and limits in terms of time to
process or queue size which will trigger increases in that commit delay.

For further details see LAG CONTROL

SYNCHRONOUS_COMMIT

Synchronous Commit is a commit scope option which is designed to be like the legacy synchronous_commit option, but accessible within the commit scope
environment. Unlike GROUP COMMIT it is a synchronous non-two-phase commit operation, with no parameters. The preceding commit scope group controls what
groups and confirmation requirements the SYNCHRONOUS_COMMIT will use.

For further details see SYNCHRONOUS_COMMIT

Combining rules

A rule can have multiple operations, combined with an AND to form a single rule. For example,

MAJORITY (Region_A) SYNCHRONOUS_COMMIT AND ANY 1 (Region_A) LAG CONTROL (MAX_LAG_SIZE = '50MB')

The first operation sets up a synchronous commit against a majority of Region_A , the second operation adds lag control which will start pushing the commit
delay up when any one of the nodes in Region_A has more than 50MB of lag. This combination of operations allows the lag control to operate when any node is
lagging.

15.5 Comparing durability options

Comparison

Most options for synchronous replication available to PGD allow for different levels of synchronization, offering different tradeoffs between performance and
protection against node or network outages.

The following list of confirmation levels explains what a user should expect to see when that confirmation level is in effect and how that can affect performance,
durability, and consistency.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 160

ON RECEIVED

ExpectExpect: The peer node has received the changes. Nothing has been updated in the peer nodes tuple store or written to storage.

Confirmation on reception means that the peer operating normally can eventually, apply the transaction without requiring any further communication, even in the
face of a full or partial network outage. A crash of a peer node might still require retransmission of the transaction, as this confirmation doesn't involve persistent
storage.

ForFor: The origin node in the transaction only has to wait for the reception of the transaction. Where transactions are large, it may improve the TPS performance of the
system.

AgainstAgainst: An increased likelihood of stale reads. Overall, ON RECEIVED is not robust because data can be lost when either a Postgres server or operating system
crash occurs.

ON REPLICATED

ExpectExpect: The peer node has received the changes and applied them to the tuple store. The changes have been written to storage, but the storage has not been flushed
to disk.

Confirmation on replication means the peer has received and applied the changes. Those changes have been written to storage, but will still be in operating system
caches and buffers. The system has yet to persist them to disk.

ForFor: This checkpoint is further down the timeline of transaction processing. The origin node only waits for the transaction to be applied, but not persisted.

AgainstAgainst: There's a slightly lower chance of stale reads over ON RECEIVED. Also, with ON REPLICATED data can survive a Postgres crash but will still not survive an
operating system crash.

ON DURABLE

ExpectExpect: The peer node has received the changes, applied them to the tuple store and persisted the changes to storage. It has yet to make the changes available to
other sessions.

Durable confirmation means that the transaction has been written and flushed to the peer node's storage. This protects against loss of data after a crash and
recovery of the peer node. But, if a session commits a transaction with an ON DURABLE rule before disconnecting and reconnecting, the transaction's changes are
not guaranteed to be visible to the reconnected session.

When used with the Group Commit commit scope kind, this also means the changes are visible.

ForFor: More robust, able to recover without retransmission in the event of a crash.

AgainstAgainst: Doesn't guarantee consistency in cases of failover.

ON VISIBLE

ExpectExpect: The peer node has received and applied the changes, persisted and flushed those changes to storage.

Confirmation of visibility means that the transaction was fully applied remotely. If a session commits a transaction with an ON VISIBLE rule before disconnecting
and reconnecting, the transaction's changes are guaranteed to be visible to the reconnected session.

ForFor: Robust and consistent.

AgainstAgainst: Lower performance.

15.6 Group Commit

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 161

Commit scope kind: GROUP COMMIT

Overview

The goal of Group Commit is to protect against data loss in case of single node failures or temporary outages. You achieve this by requiring more than one PGD node
to successfully confirm a transaction at COMMIT time. Confirmation can be sent at a number of points in the transaction processing, but defaults to "visible" when
the transaction has been flushed to disk and is visible to all other transactions.

Example

This example creates a commit scope where all the nodes in the left_dc group and any one of the nodes in the right_dc group must receive and successfuly confirm a
committed transaction.

Requirements

During normal operation, Group Commit is transparent to the application. Transactions that were in progress during failover need the reconciliation phase triggered
or consolidated by either the application or a proxy in between. This activity currently happens only when either the origin node recovers or when it's parted from the
cluster. This behavior is the same as with Postgres legacy built-in synchronous replication.

Transactions committed with Group Commit use two-phase commit underneath. Therefore, configure max_prepared_transactions high enough to handle
all such transactions originating per node.

Limitations

See the Group Commit section of the Limitations section.

Configuration

To use Group Commit, first define a commit scope. The commit scope determines the PGD nodes involved in the commit of a transaction.

Confirmation

Confirmation Level Group Commit Handling

received A remote PGD node confirms the transaction immediately after receiving it, prior to starting the local application.

replicated Confirms after applying changes of the transaction but before flushing them to disk.

SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'example_scope',
 origin_node_group :=:= 'left_dc',
 rulerule :=:= 'ALL (left_dc) GROUP COMMIT(commit_decision=raft) AND ANY 1 (right_dc) GROUP
COMMIT',
 wait_for_ready :=:=
truetrue
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 162

durable Confirms the transaction after all of its changes are flushed to disk.

visible (default) Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

Confirmation Level Group Commit Handling

Behavior

The behavior of Group Commit depends on the configuration applied by the commit scope.

Commit decisions

You can configure Group Commit to decide commits in three different ways: group , partner , and raft .

The group decision is the default. It specifies that the commit is confirmed by the origin node upon it recieving as many confirmations as required by the commit
scope group. The difference is that the commit decision is made based on PREPARE replication while the durability checks COMMIT (PREPARED) replication.

The partner decision is what Commit At Most Once uses. This approach works only when there are two data nodes in the node group. These two nodes are
partners of each other, and the replica rather than origin decides whether to commit something. This approach requires application changes to use the CAMO
transaction protocol to work correctly, as the application is in some way part of the consensus. For more on this approach, see CAMO.

The raft decision uses PGDs built-in raft consensus for commit decisions. Use of the raft decision can reduce performance. It is currently only required when
using GROUP COMMIT with an ALL commit scope group.

Using an ALL commit scope group requires that the commit decision must be set to raft to avoid reconciliation issues.

Conflict resolution

Conflict resolution can be async or eager .

Async means that PGD does optimistic conflict resolution during replication using the row-level resolution as configured for given node. This happens regardless of
whether the origin transaction committed or is still in progress. See Conflicts for details about how the asynchronous conflict resolution works.

Eager means that conflicts are resolved eagerly (as part of agreement on COMMIT), and conflicting transactions get aborted with a serialization error. This
approach provides greater isolation than the asynchronous resolution at the price of performance.

Using an ALL commit scope group requires that the commit decision must be set to raft to avoid reconciliation issues.

For the details about how Eager conflict resolution works, see Eager conflict resolution.

Aborts

To prevent a transaction that can't get consensus on the COMMIT from hanging forever, the ABORT ON clause allows specifying timeout. After the timeout, the
transaction abort is requested. If the transaction is already decided to be committed at the time the abort request is sent, the transaction does eventually COMMIT
even though the client might receive an abort message.

See also Limitations.

Transaction Reconciliation

A group commit transaction’s commit on the origin node is implicitly converted into a two phase commit.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 163

In the first phase (prepare) the transaction is prepared locally and made ready to commit. The data is made durable but uncomitted at this stage so other
transactions cannot see the changes made by this transaction. This prepared transaction gets copied to all remaining nodes through normal logical replication.

The origin node seeks confirmations from other nodes, as per rules in the group commit grammar. If it gets confirmations from minimum required nodes in the
cluster, it decides to commit this transaction moving onto the second phase (commit) where it also sends this decision via replication to other nodes which will also
eventually commit on getting this message.

There is a possibility of failure at various stages. For example, the origin node may crash after preparing the transaction. Or the origin and one or more replicas may
crash.

This leaves the prepared transactions in the system. The pg_prepared_xacts view in Postgres can show prepared transactions on a system. The prepared
transactions could be holding locks and other resources and they therefore need to be either aborted or committed. That decision has to be made with a consensus
of nodes.

When commit_decision is raft then, raft acts as the reconcilator and these transactions are eventually, automatically, reconciled.

When the commit_decision is group then, transactions do not use raft. Instead the write lead in the cluster performs the role of reconciliator. This is because it is
the node that is most ahead with respect to changes in its sub-group. It detects when a node is down and initiates reconciliation for such node by looking for
prepared transactions it may have with the down node as the origin.

For all such transactions, it sees if the nodes as per the rules of the commit scope have the prepared transaction, it takes a decision. This decision is conveyed over
raft and needs majority of the nodes to be up to do reconciliation.

This process happens in the background and there is no user command needed to control or issue this.

15.7 Commit At Most Once

Commit Scope Kind: CAMO

Overview

The objective of the Commit At Most Once (CAMO) feature is to prevent the application from committing more than once.

Without CAMO, when a client loses connection after a COMMIT is submitted, the application might not receive a reply from the server and is therefore unsure
whether the transaction committed.

The application can't easily decide between the two options of:

Retrying the transaction with the same data, since this can in some cases cause the data to be entered twice

Not retrying the transaction and risk that the data doesn't get processed at all

Either of those is a critical error with high-value data.

One way to avoid this situation is to make sure that the transaction includes at least one INSERT into a table with a unique index. However, that depends on the
application design and requires application-specific error-handling logic, so it isn't effective in all cases.

The CAMO feature in PGD offers a more general solution and doesn't require an INSERT . When activated by bdr.commit_scope , the application receives a
message containing the transaction identifier, if already assigned. Otherwise, the first write statement in a transaction sends that information to the client.

If the application sends an explicit COMMIT , the protocol ensures that the application receives the notification of the transaction identifier before the COMMIT is
sent. If the server doesn't reply to the COMMIT , the application can handle this error by using the transaction identifier to request the final status of the transaction
from another PGD node. If the prior transaction status is known, then the application can safely decide whether to retry the transaction.

CAMO works by creating a pair of partner nodes that are two PGD nodes from the same PGD group. In this operation mode, each node in the pair knows the outcome

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 164

of any recent transaction executed on the other peer and especially (for our need) knows the outcome of any transaction disconnected during COMMIT . The node
that receives the transactions from the application might be referred to as "origin" and the node that confirms these transactions as "partner." However, there's no
difference in the CAMO configuration for the nodes in the CAMO pair. The pair is symmetric.

WarningWarning

CAMO requires changes to the user's application to take advantage of the advanced error handling. Enabling a parameter isn't enough to gain protection.
Reference client implementations are provided to customers on request.

NoteNote

The CAMO commit scope kind is mostly an alias for GROUP COMMIT (transaction_tracking = true, commit_decision = partner)
with an additional DEGRADE ON clause.

Requirements

To use CAMO, an application must issue an explicit COMMIT message as a separate request, not as part of a multi-statement request. CAMO can't provide status
for transactions issued from procedures or from single-statement transactions that use implicit commits.

Configuration

Configuration of CAMO happens through commit scopes.

Confirmation

Confirmation Level CAMO Handling

received Not applicable, only uses the default VISIBLE .

replicated Not applicable, only uses the default VISIBLE .

durable Not applicable, only uses the default VISIBLE .

visible (default) Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

Limitations

See the CAMO section of the Limitations section.

Failure scenarios

Different failure scenarios occur in different configurations.

Data persistence at receiver side

By default, a PGL writer operates in bdr.synchronous_commit = off mode when applying transactions from remote nodes. This holds true for CAMO as
well, meaning that transactions are confirmed to the origin node possibly before reaching the disk of the CAMO partner. In case of a crash or hardware failure, a

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 165

confirmed transaction might be unrecoverable on the CAMO partner by itself. This isn't an issue as long as the CAMO origin node remains operational, as it
redistributes the transaction once the CAMO partner node recovers.

This in turn means CAMO can protect against a single-node failure, which is correct for local mode as well as or even in combination with remote write.

To cover an outage of both nodes of a CAMO pair, you can use bdr.synchronous_commit = local to enforce a flush prior to the pre-commit confirmation.
This doesn't work with either remote write or local mode and has a performance impact due to I/O requirements on the CAMO partner in the latency sensitive
commit path.

Asynchronous mode

When the DEGRADE ON ... TO ASYNC clause is used in the commit scope, a node detects whether its CAMO partner is ready. If not, it temporarily switches to
asynchronous (local) mode. When in this mode, a node commits transactions locally until switching back to CAMO mode.

This doesn't allow COMMIT status to be retrieved, but it does let you choose availability over consistency. This mode can tolerate a single-node failure. In case both
nodes of a CAMO pair fail, they might choose incongruent commit decisions to maintain availability, leading to data inconsistencies.

For a CAMO partner to switch to ready, it needs to be connected, and the estimated catchup interval needs to drop below the timeout value of TO ASYNC . You
can check the current readiness status of a CAMO partner with bdr.is_camo_partner_ready() , while bdr.node_replication_rates provides the
current estimate of the catchup time.

The switch from CAMO protected to asynchronous mode is only ever triggered by an actual CAMO transaction either because the commit exceeds the timeout
value of TO ASYNC or, in case the CAMO partner is already known, disconnected at the time of commit. This switch is independent of the estimated catchup
interval. If the CAMO pair is configured to require the current node to be the write lead of a group as configured through enable_proxy_routing node group
option. See Commit scopes for syntax. This can prevent a split brain situation due to an isolated node from switching to asynchronous mode. If
enable_proxy_routing isn't set for the CAMO group, the origin node switches to asynchronous mode immediately.

The switch from asynchronous mode to CAMO mode depends on the CAMO partner node, which initiates the connection. The CAMO partner tries to reconnect at
least every 30 seconds. After connectivity is reestablished, it might therefore take up to 30 seconds until the CAMO partner connects back to its origin node. Any lag
that accumulated on the CAMO partner further delays the switch back to CAMO protected mode.

Unlike during normal CAMO operation, in asynchronous mode there's no added commit overhead. This can be problematic, as it allows the node to continuously
process more transactions than the CAMO pair can normally process. Even if the CAMO partner eventually reconnects and applies transactions, its lag only ever
increases in such a situation, preventing reestablishing the CAMO protection. To artificially throttle transactional throughput, PGD provides the
bdr.camo_local_mode_delay setting, which allows you to delay a COMMIT in local mode by an arbitrary amount of time. We recommend measuring

commit times in normal CAMO mode during expected workloads and configuring this delay accordingly. The default is 5 ms, which reflects a asynchronous network
and a relatively quick CAMO partner response.

Consider the choice of whether to allow asynchronous mode in view of the architecture and the availability requirements. The following examples provide some
detail.

Example

This example considers a setup with two PGD nodes that are the CAMO partner of each other.

For this CAMO commit scope to be legal, the number of nodes in the group must equal exactly 2. Using ALL or ANY 2 on a group consisting of several nodes is an
error because the unquantified group expression doesn't resolve to a definite pair of nodes.

-- create a CAMO commit scope for a group
over
-- a definite pair of
nodes
SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'example_scope',
 origin_node_group :=:= 'camo_dc',
 rulerule :=:= 'ALL (left_dc) CAMO DEGRADE ON (timeout=500ms) TO
ASYNC'
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 166

With asynchronous mode

If asynchronous mode is allowed, there's no single point of failure. When one node fails:

The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
New write transactions are allowed. If the second node also fails, then the outcome of those transactions that were being committed at that time is unknown.

Without asynchronous mode

If asynchronous mode isn't allowed, then each node requires the other node for committing transactions, that is, each node is a single point of failure. When one
node fails:

The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
New write transactions are prevented until the node recovers.

Application use

Overview and requirements

CAMO relies on a retry loop and specific error handling on the client side. There are three aspects to it:

The result of a transaction's COMMIT needs to be checked and, in case of a temporary error, the client must retry the transaction.
Prior to COMMIT , the client must retrieve a global identifier for the transaction, consisting of a node id and a transaction id (both 32-bit integers).
If the current server fails while attempting a COMMIT of a transaction, the application must connect to its CAMO partner, retrieve the status of that
transaction, and retry depending on the response.

The application must store the global transaction identifier only for the purpose of verifying the transaction status in case of disconnection during COMMIT . In
particular, the application doesn't need another persistence layer. If the application fails, it needs only the information in the database to restart.

To illustrate this, we have an example of a retry loop in a CAMO-aware client application, written in a C-like pseudo-code. It expects two DSNs origin_dsn and
partner_dsn providing connection information. These usually are the same DSNs as used for the initial call to bdr.create_node and can be looked up in
bdr.node_summary , column interface_connstr .

PGconn *conn = PQconnectdb(origin_dsn);

The process starts connecting to the origin node. We now enter our loop:

loop {
 PQexec(conn, "BEGIN");

We start our transaction and begin populating it with changes:

 PQexec(conn, "INSERT INTO ...");
 ...

Once we are done, we need to make a record of the local node id and the transaction id. Both are available as parameters.

 node_id = PQparameterStatus(conn, "bdr.local_node_id");
 xid = PQparameterStatus(conn, "transaction_id");

We are now ready to try and commit.

 PQexec(conn, "COMMIT");

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 167

 if (PQresultStatus(res) == PGRES_COMMAND_OK)
 return SUCCESS;

If the result is PGRES_COMMAND_OK , we are good and ready to move on. But if it isn't, we need to use CAMO to track the transaction to completion. The first
question we need to ask is was the connection bad?

 else if (PQstatus(res) == CONNECTION_BAD)
 {

If it was a bad connection, then we can check on the CAMO partner node to see if the transaction made it there.

 conn = PQconnectdb(partner_dsn);
 if (!connectionEstablished())
 panic();

If we can't connect to the partner node, there's not a lot we can do. So we should panic, or take similar actions.

But if we can connect, we can use bdr.logical_transaction_status() to find out how the transaction did. We recorded the required values, node_id and
xid - the transaction id, just before we committed the transaction.

 sql = "SELECT bdr.logical_transaction_status($node_id, $xid)";
 txn_status = PQexec(conn, sql);
 if (txn_status == "committed")
 return SUCCESS;
 else
 continue; // to retry the transaction on the partner
 }

If the transaction reports it has been committed, then we can call this transaction a success. No more action is required. If, on the other hand, it does not report it
has been committed, we should continue in the loop so the transaction can be retried on the partner node.

 else
 {
 if (isPermanentError())
 return FAILURE;
 else
 {
 sleep(increasing_retry_delay);

 continue;
 }
 }
}

If status of the transaction wasn't success or connection was bad, we check if the problem was a permanent error; if so, we should report a failure of the transaction.
If not, it is still able to be retried and the code should sleep for a period of time that increases with each retry, and then retry the transaction.

Working with the CAMO partner

Permissions RequiredPermissions Required

A number of the following CAMO functions require permission. Any user wishing to use CAMO, the user must have at least the bdr_application role
assigned to them.

The function bdr.is_camo_partner_connected() allows checking the connection status of a CAMO partner node configured in pair mode. There currently
is no equivalent for CAMO used with Eager Replication.

To check that the CAMO partner is ready, use the function bdr.is_camo_partner_ready . Underneath, this triggers the switch to and from local mode.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 168

To find out more about the configured CAMO partner, use bdr.get_configured_camo_partner() . This will returns the local node's CAMO partner.

You can wait on the camo partner to process the queue with the function bdr.wait_for_camo_partner_queue() . This function is a wrapper of
bdr.wait_for_apply_queue , the difference being that bdr.wait_for_camo_partner_queue() defaults to querying the CAMO partner node. It

returns an error if the local node isn't part of a CAMO pair.

To check the status of a transaction that was being committed when the node failed, the application must use the function
bdr.logical_transaction_status .

You pass this function the the node_id and transaction_id of the transaction you want to check on. With CAMO used in pair mode, you can only use this function on a
node that's part of a CAMO pair. Along with Eager Replication, you can use it on all nodes.

In all cases, you must call the function within 15 minutes after the commit was issued. The CAMO partner must regularly purge such meta-information and
therefore can't provide correct answers for older transactions.

Before querying the status of a transaction, this function waits for the receive queue to be consumed and fully applied. This mechanism prevents early negative
answers for transactions that were received but not yet applied.

Despite its name, it's not always a read-only operation. If the status is unknown, the CAMO partner decides whether to commit or abort the transaction, storing that
decision locally to ensure consistency going forward.

The client must not call this function before attempting to commit on the origin. Otherwise the transaction might be forced to roll back.

Connection pools and proxies

Consider the effect of connection pools and proxies when designing a CAMO cluster. A proxy might freely distribute transactions to all nodes in the commit group,
that is, to both nodes of a CAMO pair or to all PGD nodes in case of Eager All-Node Replication).

Take care to ensure that the application fetches the proper node id. When using session pooling, the client remains connected to the same node, so the node id
remains constant for the lifetime of the client session. However, with finer-grained transaction pooling, the client needs to fetch the node id for every transaction
(as in the example that follows.

A client that isn't directly connected to the PGD nodes might not even notice a failover or switchover. But it can always use the bdr.local_node_id parameter
to determine which node it's currently connected to. In the crucial situation of a disconnect during COMMIT, the proxy must properly forward that disconnect as an
error to the client applying the CAMO protocol.

For CAMO in received mode, a proxy that potentially switches between the CAMO pairs must use the bdr.wait_for_camo_partner_queue function to
prevent stale reads.

CAMO limitations

CAMO limitations are covered on the Durability limitations page.

Performance implications

CAMO extends the Postgres replication protocol by adding a message roundtrip at commit. Applications have a higher commit latency than with asynchronous
replication, mostly determined by the roundtrip time between involved nodes. Increasing the number of concurrent sessions can help to increase parallelism to
obtain reasonable transaction throughput.

The CAMO partner confirming transactions must store transaction states. Compared to non-CAMO operation, this might require an added seek for each transaction
applied from the origin.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 169

Client application testing

Proper use of CAMO on the client side isn't trivial. We strongly recommend testing the application behavior with the PGD cluster against failure scenarios such as
node crashes or network outages.

15.8 Lag Control

Commit scope kind: LAG CONTROL

Overview

Lag Control provides a mechanism where, if replication is running outside of limits set, a delay is injected into the origin node's client connections after processing
transactions that make replicable updates. This delay is designed to slow the incoming transactions and bring replication back within the defined limits.

Background

The data throughput of database applications on a PGD origin node can exceed the rate at which committed data can replicate to downstream peer nodes.

If this imbalance persists, it can put satisfying organizational objectives such as RPO, RCO, and GEO at risk.

RPORPO (Recovery point objective) specifies the maximum-tolerated amount of data that can be lost due to unplanned events, usually expressed as an amount of
time. In PGD, RPO determines the acceptable amount of committed data that hasn't been applied to one or more peer nodes.

RCORCO (Resource constraint objective) acknowledges that there is finite storage available. In PGD, the demands on these storage resources increase as lag
increases.

GEOGEO (Group elasticity objective) ensures that any node isn't originating new data at a rate that can't be saved to its peer nodes.

To allow organizations to achieve their objectives, PGD offers Lag Control. This feature provides a means to precisely regulate the potential imbalance without
intruding on applications, by transparently introducing a delay to READ WRITE transactions that modify data. This delay, the PGD Commit Delay, starts at 0ms.

Using the LAG CONTROL commit scope kind, you can set a maximum time that commits commits can be delayed between nodes in a group, maximum lag time or
maximum lag size (based on the size of the WAL).

If the nodes can process transactions within the specified maximums on enough nodes, the PGD commit delay will stay at 0ms or be reduced towards 0ms. If the
maximums are exceeded on enough nodes though the PGD commit delay on the originating node is increased. It will continue increasing until the lag control
constraints are met on enough nodes again.

The PGD commit delay happens after a transaction has completed and released all its locks and resources. This timing of the delay allows concurrent active
transactions to carry on observing and modifying the delayed transactions values and acquiring its resources.

Strictly speaking, the PGD commit delay isn't a per-transaction delay. It's the mean value of commit delays over a stream of transactions for a particular client
connection. This technique allows the commit delay and fine-grained adjustments of the value to escape the coarse granularity of OS schedulers, clock interrupts,
and variation due to system load. It also allows the PGD runtime commit delay to settle within microseconds of the lowest duration possible to maintain a lag
measure threshold.

PGD commit delay != Postgres commit delayPGD commit delay != Postgres commit delay

Don't conflate the PGD commit delay with the Postgres commit delay. They are unrelated and perform different functions. Don't substitute one for the
other.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 170

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-COMMIT-DELAY

Requirements

To get started using Lag Control:

Determine the maximum acceptable commit delay time max_commit_delay that all database applications can tolerate.

Decide on the lag measure to use. Choose either lag size max_lag_size or lag time max_lag_time .

Decide on the groups or subgroups involved and the minimum number of nodes in each collection required to satisfy confirmation. This information forms the
basis for the definition of a commit scope rule.

Configuration

You specify lag control in a commit scope, which allows consistent and coordinated parameter settings across the nodes spanned by the commit scope rule. You can
include a lag control specification in the default commit scope of a top group or as part of an origin group commit scope.

As in example, take a configuration with two datacenters, left_dc and right_dc , represented as sub-groups:

The code below adds Lag Control rules for those two data centers, using individual rules for each subgroup:

You can add a lag control commit scope rule to existing commit scope rules that also include group commit and CAMO rule specifications.

The max_commit_delay is interval, typically specified in milliseconds (1ms). Using fractional values for sub-millisecond precision is supported.

The max_lag_size is an integer which specifies the maximum allowed lag in terms of WAL bytes.

The max_lag_time is an interval, typically specified in seconds, that specifies the maximum allowed lag in terms of time.

The maximum commit delay (max_commit_delay) is a ceiling value representing a hard limit, which means that a commit delay never exceeds the configured

SELECTSELECT bdr.create_node_group(
 node_group_name :=:= 'left_dc',
 parent_group_name :=:= 'top_group',
 join_node_group :=:= falsefalse
);
SELECTSELECT bdr.create_node_group(
 node_group_name :=:= 'right_dc',
 parent_group_name :=:= 'top_group',
 join_node_group :=:= falsefalse
);

SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'example_scope',
 origin_node_group :=:= 'left_dc',
 rulerule :=:= 'ALL (left_dc) LAG CONTROL (max_commit_delay=500ms, max_lag_time=30s) AND ANY 1 (right_dc) LAG
CONTROL (max_commit_delay=500ms, max_lag_time=30s)',
 wait_for_ready :=:=
truetrue
);
SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'example_scope',
 origin_node_group :=:= 'right_dc',
 rulerule :=:= 'ANY 1 (left_dc) LAG CONTROL (max_commit_delay=0.250ms, max_lag_size=100MB) AND ALL (right_dc) LAG
CONTROL (max_commit_delay=0.250ms, max_lag_size=100MB)',
 wait_for_ready :=:=
truetrue
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 171

value.

The maximum lag size and time (max_lag_size and max_lag_time) are soft limits that can be exceeded. When the maximum commit delay is reached,
there's no additional back pressure on the lag measures to prevent their continued increase.

Confirmation

Confirmation Level Lag Control Handling

received Not applicable, only uses the default VISIBLE .

replicated Not applicable, only uses the default VISIBLE .

durable Not applicable, only uses the default VISIBLE .

visible (default) Not applicable, only uses the default VISIBLE .

Transaction application

The PGD commit delay is applied to all READ WRITE transactions that modify data for user applications. This behavior implies that any transaction that doesn't
modify data, including declared READ WRITE transactions, is exempt from the commit delay.

Asynchronous transaction commit also executes a PGD commit delay. This might appear counterintuitive, but asynchronous commit, by virtue of its performance,
can be one of the greatest sources of replication lag.

Postgres and PGD auxillary processes don't delay at transaction commit. Most notably, PGD writers don't execute a commit delay when applying remote
transactions on the local node. This is by design, as PGD writers contribute nothing to outgoing replication lag and can reduce incoming replication lag the most by
not having their transaction commits throttled by a delay.

Limitations

The maximum commit delay is a ceiling value representing a hard limit, which means that a commit delay never exceeds the configured value. Conversely, the
maximum lag measures both by size and time and are soft limits that can be exceeded. When the maximum commit delay is reached, there's no additional back
pressure on the lag measures to prevent their continued increase.

There's no way to exempt origin transactions that don't modify PGD replication sets from the commit delay. For these transactions, it can be useful to SET LOCAL the
maximum transaction delay to 0.

Caveats

Application TPS is one of many factors that can affect replication lag. Other factors include the average size of transactions for which PGD commit delay can be less
effective. In particular, bulk load operations can cause replication lag to rise, which can trigger a concomitant rise in the PGD runtime commit delay beyond the
level reasonably expected by normal applications, although still under the maximum allowed delay.

Similarly, an application with a very high OLTP requirement and modest data changes can be unduly restrained by the acceptable PGD commit delay setting.

In these cases, it can be useful to use the SET [SESSION|LOCAL] command to custom configure Lag Control settings for those applications or modify those
applications. For example, bulk load operations are sometimes split into multiple, smaller transactions to limit transaction snapshot duration and WAL retention
size or establish a restart point if the bulk load fails. In deference to Lag Control, those transaction commits can also schedule very long PGD commit delays to allow
digestion of the lag contributed by the prior partial bulk load.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 172

Meeting organizational objectives

In the example objectives list earlier:

RPO can be met by setting an appropriate maximum lag time.
RCO can be met by setting an appropriate maximum lag size.
GEO can be met by monitoring the PGD runtime commit delay and the PGD runtime lag measures,

As mentioned, when the maximum PGD runtime commit delay is pegged at the PGD configured commit-delay limit, and the lag measures consistently exceed their
PGD-configured maximum levels, this scenario can be a marker for PGD group expansion.

Lag Control and Extensions

The PGD commit delay is a post-commit delay. It occurs after the transaction has committed and after all Postgres resources locked or acquired by the transaction
are released. Therefore, the delay doesn't prevent concurrent active transactions from observing or modifying its values or acquiring its resources. The same
guarantee can't be made for external resources managed by Postgres extensions. Regardless of extension dependencies, the same guarantee can be made if the
PGD extension is listed before extension-based resource managers in postgresql.conf.

15.9 PGD Synchronous Commit

Commit scope kind: SYNCHRONOUS_COMMIT

Overview

PGD's SYNCHRONOUS_COMMIT is a commit scope kind that works in a way that is more like PostgreSQL's Synchronous commit option in its underlying operation.
Unlike the PostgreSQL option though, it is configured as a commit scope and is easier to configure and interact with within PGD.

Unlike other commit scope kinds such as GROUP COMMIT and CAMO, the transactions in a SYNCHRONOUS_COMMIT operation will not be transformed into a two
phase commit (2PC) transaction, but work more like a Postgres Synchronous commit.

Example

SELECT bdr.add_commit_scope(
 commit_scope_name := 'example_sc_scope',
 origin_node_group := 'left_dc',
 rule := 'MAJORITY (left_dc) SYNCHRONOUS_COMMIT',
 wait_for_ready := true
);

In this example, any node in the left_dc group, when this commit scope is in use, will use SYNCHRONOUS_COMMIT to replicate changes to the other nodes in
the left_dc group. It will look for a majority of nodes in the left_dc group to confirm that they have committed the transaction.

Configuration

There are no parameters for SYNCHRONOUS_COMMIT and therefore no configuration.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 173

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

Confirmation

Confirmation Level PGD Synchronous Commit Handling

received A remote PGD node confirms the transaction once it's been fully received and is in in-memory write queue.

replicated Same behavior as received .

durable Confirms the transaction after all of its changes are flushed to disk. Analogous to synchronous_commit = on in legacy
synchronous replication.

visible
(default)

Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions. Analogous to
synchronous_commit = remote_apply in legacy synchronous replication.

Details

Currently SYNCHRONOUS_COMMIT does not use the confirmation levels of the commit scope rule syntax.

15.10 Administering

When running a PGD cluster with Group Commit, there are some things you need to be aware of when administering the system, such as how to safely shut down
and restart nodes.

Planned shutdown and restarts

When using Group Commit with receive confirmations, take care with planned shutdown or restart. By default, the apply queue is processed prior to shutting down.
However, in the immediate shutdown mode, the queue is discarded at shutdown, leading to the stopped node "forgetting" transactions in the queue. A
concurrent failure of the origin node can lead to loss of data, as if both nodes failed.

To ensure the apply queue gets flushed to disk, use either smart or fast shutdown for maintenance tasks. This approach maintains the required
synchronization level and prevents loss of data.

15.11 Legacy synchronous replication using PGD

ImportantImportant

We highly recommend PGD Synchronous Commit instead of legacy synchronous replication.

Postgres provides physical streaming replication (PSR), which is unidirectional but offers a synchronous variant.

For backward compatibility, PGD still supports configuring synchronous replication with synchronous_commit and synchronous_standby_names .
Consider using Group Commit or Synchronous Commit instead.

Unlike PGD replication options, PSR sync will persist first, replicating after the WAL flush of commit record.

Usage

To enable synchronous replication using PGD, you need to add the application name of the relevant PGD peer nodes to synchronous_standby_names . The
use of FIRST x or ANY x offers some flexibility if this doesn't conflict with the requirements of non-PGD standby nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 174

https://www.postgresql.org/docs/current/server-shutdown.html
https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION

Once you've added it, you can configure the level of synchronization per transaction using synchronous_commit , which defaults to on . This setting means
that adding the application name to to synchronous_standby_names already enables synchronous replication. Setting synchronous_commit to
local or off turns off synchronous replication.

Due to PGD applying the transaction before persisting it, the values on and remote_apply are equivalent for logical replication.

Comparison

The following table summarizes what a client can expect from a peer node replicated to after receiving a COMMIT confirmation from the origin node the transaction
was issued to. The Mode column takes on different meaning depending on the variant. For PSR and legacy synchronous replication with PGD, it refers to the
synchronous_commit setting.

Variant Mode Received Visible Durable

PSR Async off (default) no no no

PSR Sync remote_write (2) yes no no (3)

PSR Sync on (2) yes no yes

PSR Sync remote_apply (2) yes yes yes

PGD Legacy Sync (1) remote_write (2) yes no no

PGD Legacy Sync (1) on (2) yes yes yes

PGD Legacy Sync (1) remote_apply (2) yes yes yes

(1) Consider using Group Commit instead.

(2) Unless switched to local mode (if allowed) by setting synchronous_replication_availability to async' , otherwise the values for the
asynchronous PGD default apply.

(3) Written to the OS, durable if the OS remains running and only Postgres crashes.

Postgres configuration parameters

The following table provides an overview of the configuration settings that you must set to a non-default value (req) and those that are optional (opt) but affecting a
specific variant.

Setting (GUC) Group Commit Lag Control PSR Legacy Sync

synchronous_standby_names n/a n/a req req

synchronous_commit n/a n/a opt opt

synchronous_replication_availability n/a n/a opt opt

Migration to commit scopes

You configure the Group Commit feature of PGD independent of synchronous_commit and synchronous_standby_names . Instead, the
bdr.commit_scope GUC allows you to select the scope per transaction. And instead of configuring synchronous_standby_names on each node

individually, Group Commit uses globally synchronized commit scopes.

NoteNote

While the grammar for synchronous_standby_names and commit scopes looks similar, the former doesn't account for the origin node, but the
latter does. Therefore, for example, synchronous_standby_names = 'ANY 1 (..)' is equivalent to a commit scope of ANY 2 (...) . This
choice makes reasoning about majority easier and reflects that the origin node also contributes to the durability and visibility of the transaction.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 175

15.12 Limitations

The following limitations apply to the use of commit scopes and the various durability options they enable.

General limitations

Legacy synchronous replication uses a mechanism for transaction confirmation different from the one used by CAMO, Eager, and Group Commit. The two
aren't compatible, so don't use them together. Whenever you use Group Commit, CAMO or Eager, make sure none of the PGD nodes are configured in
synchronous_standby_names .

Postgres two-phase commit (2PC) transactions (that is, PREPARE TRANSACTION) can't be used with CAMO, Group Commit, or Eager because those
features use two-phase commit underneath.

Group Commit

Group Commit enables configurable synchronous commits over nodes in a group. If you use this feature, take the following limitations into account:

Not all DDL can run when you use Group Commit. If you use unsupported DDL, a warning is logged, and the transactions commit scope is set to local. The
only supported DDL operations are:

Nonconcurrent CREATE INDEX
Nonconcurrent DROP INDEX
Nonconcurrent REINDEX of an individual table or index
CLUSTER (of a single relation or index only)
ANALYZE
TRUNCATE

Explicit two-phase commit is not supported by Group Commit as it already uses two-phase commit.

Combining different commit decision options in the same transaction or combining different conflict resolution options in the same transaction isn't
supported.

Currently, Raft commit decisions are extremely slow, producing very low TPS. We recommended using them only with the eager conflict resolution setting
to get the Eager All-Node Replication behavior of PGD 4 and older.

Eager

Eager is available through Group Commit. It avoids conflicts by eagerly aborting transactions that might clash. It's subject to the same limitations as Group Commit.

Eager doesn't allow the NOTIFY SQL command or the pg_notify() function. It also don't allow LISTEN or UNLISTEN .

CAMO

Commit At Most Once (CAMO) is a feature that aims to prevent applications committing more than once. If you use this feature, take these limitations into account
when planning:

CAMO is designed to query the results of a recently failed COMMIT on the origin node. In case of disconnection the application must request the transaction
status from the CAMO partner. Ensure that you have as little delay as possible after the failure before requesting the status. Applications must not rely on
CAMO decisions being stored for longer than 15 minutes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 176

https://www.postgresql.org/docs/current/sql-prepare-transaction.html

If the application forgets the global identifier assigned, for example, as a result of a restart, there's no easy way to recover it. Therefore, we recommend that
applications wait for outstanding transactions to end before shutting down.

For the client to apply proper checks, a transaction protected by CAMO can't be a single statement with implicit transaction control. You also can't use CAMO
with a transaction-controlling procedure or in a DO block that tries to start or end transactions.

CAMO resolves commit status but doesn't resolve pending notifications on commit. CAMO doesn't allow the NOTIFY SQL command or the pg_notify()
function. They also don't allow LISTEN or UNLISTEN .

When replaying changes, CAMO transactions might detect conflicts just the same as other transactions. If timestamp-conflict detection is used, the CAMO
transaction uses the timestamp of the prepare-on-the-origin node, which is before the transaction becomes visible on the origin node itself.

CAMO isn't currently compatible with transaction streaming. Be sure to disable transaction streaming when planning to use CAMO. You can configure this
option globally or in the PGD node group. See Transaction streaming configuration.

CAMO isn't currently compatible with decoding worker. Be sure to not enable decoding worker when planning to use CAMO. You can configure this option in
the PGD node group. See Decoding worker disabling.

Not all DDL can run when you use CAMO. If you use unsupported DDL, a warning is logged and the transactions commit scope is set to local only. The only
supported DDL operations are:

Nonconcurrent CREATE INDEX
Nonconcurrent DROP INDEX
Nonconcurrent REINDEX of an individual table or index
CLUSTER (of a single relation or index only)
ANALYZE
TRUNCATE

Explicit two-phase commit is not supported by CAMO as it already uses two-phase commit.

You can combine only CAMO transactions with the DEGRADE TO clause for switching to asynchronous operation in case of lowered availability.

15.13 Internal timing of operations

For a better understanding of how the different modes work, it's helpful to know that legacy physical streaming replication (PSR) and PGD apply transactions in
different ways.

With Legacy PSR, the order of operations is:

1. Origin flushes a commit record to WAL, making the transaction visible locally.
2. Peer node receives changes and issues a write.
3. Peer flushes the received changes to disk.
4. Peer applies changes, making the transaction visible on the peer.

Note that the change is written to the disk before applying the chnages.

With PGD, by default and with Lag Control, the order of operations is different. In these cases, the change becomes visible on the peer before the transaction is
flushed to the peer's disk:

1. Origin flushes a commit record to WAL, making the transaction visible locally.
2. Peer node receives changes into its apply queue in memory.
3. Peer applies changes, making the transaction visible on the peer.
4. Peer persists the transaction by flushing to disk.

For PGD's Group Commit and CAMO, the origin node waits for a certain number of confirmations prior to making the transaction visible locally. The order of
operations is:

1. Origin flushes a prepare or precommit record to WAL.
2. Peer node receives changes into its apply queue in memory.
3. Peer applies changes, making the transaction visible on the peer.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 177

4. Peer persists the transaction by flushing to disk.
5. Origin commits and makes the transaction visible locally.

The following table summarizes the differences.

Variant Order of apply vs
persist

Replication before or after
commit

PSR persist first after WAL flush of commit record

PGD Async apply first after WAL flush of commit record

PGD Lag Control apply first after WAL flush of commit record

PGD Group Commit apply first before COMMIT on origin

PGD CAMO apply first before COMMIT on origin

16 Consistency

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can
result in data conflicts when using standard data types.

Conflicts aren't errors. In most cases, they're events that PGD can detect and resolve as they occur. Resolution depends on the nature of the application and the
meaning of the data, so it's important that PGD provides the application a range of choices as to how to resolve them.

By default, conflicts are resolved at the row level. When changes from two nodes conflict, either the local or remote tuple is picked and the other is discarded. For
example, the commit timestamps might be compared for the two conflicting changes and the newer one kept. This approach ensures that all nodes converge to the
same result and establishes commit-order-like semantics on the whole cluster.

Column-level conflict detection and resolution is available with PGD, described in CLCD.

If you want to avoid conflicts, you can use Group Commit with Eager conflict resolution or conflict-free data types (CRDTs), described in CRDT.

16.1 Conflicts

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can
result in data conflicts when using standard data types.

Conflicts aren't errors. In most cases, they are events that PGD can detect and resolve as they occur. Resolving them depends on the nature of the application and
the meaning of the data, so it's important for PGD to provide the application a range of choices for how to resolve conflicts.

By default, conflicts are resolved at the row level. When changes from two nodes conflict, PGD picks either the local or remote tuple and the discards the other. For
example, the commit timestamps might be compared for the two conflicting changes and the newer one kept. This approach ensures that all nodes converge to the
same result and establishes commit-order-like semantics on the whole cluster.

Conflict handling is configurable, as described in Conflict resolution. PGD can detect conflicts and handle them differently for each table using conflict triggers,
described in Stream triggers.

Column-level conflict detection and resolution is available with PGD, described in CLCD.

By default, all conflicts are logged to bdr.conflict_history . If conflicts are possible, then table owners must monitor for them and analyze how to avoid
them or make plans to handle them regularly as an application task. The LiveCompare tool is also available to scan regularly for divergence.

Some clustering systems use distributed lock mechanisms to prevent concurrent access to data. These can perform reasonably when servers are very close to each
other but can't support geographically distributed applications where very low latency is critical for acceptable performance.

Distributed locking is essentially a pessimistic approach. PGD advocates an optimistic approach, which is to avoid conflicts where possible but allow some types of
conflicts to occur and resolve them when they arise.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 178

https://www.enterprisedb.com/docs/livecompare/latest

How conflicts happen

Inter-node conflicts arise as a result of sequences of events that can't happen if all the involved transactions happen concurrently on the same node. Because the
nodes exchange changes only after the transactions commit, each transaction is individually valid on the node it committed on. It isn't valid if applied on another
node that did other conflicting work at the same time.

Since PGD replication essentially replays the transaction on the other nodes, the replay operation can fail if there's a conflict between a transaction being applied
and a transaction that was committed on the receiving node.

Most conflicts can't happen when all transactions run on a single node because Postgres has inter-transaction communication mechanisms to prevent it. Examples
of these mechanisms are UNIQUE indexes, SEQUENCE operations, row and relation locking, and SERIALIZABLE dependency tracking. All of these
mechanisms are ways to communicate between ongoing transactions to prevent undesirable concurrency issues.

PGD doesn't have a distributed transaction manager or lock manager. That's part of why it performs well with latency and network partitions. As a result,
transactions on different nodes execute entirely independently from each other when using the default, which is lazy replication. Less independence between nodes
can avoid conflicts altogether, which is why PGD also offers Eager Replication for when this is important.

Types of conflict

PRIMARY KEY or UNIQUE conflicts

The most common conflicts are row conflicts, where two operations affect a row with the same key in ways they can't on a single node. PGD can detect most of
those and applies the update_if_newer conflict resolver.

Row conflicts include:

INSERT versus INSERT
UPDATE versus UPDATE
UPDATE versus DELETE
INSERT versus UPDATE
INSERT versus DELETE
DELETE versus DELETE

The view bdr.node_conflict_resolvers provides information on how conflict resolution is currently configured for all known conflict types.

INSERT/INSERT conflicts

The most common conflict, INSERT / INSERT , arises where INSERT operations on two different nodes create a tuple with the same PRIMARY KEY values (or
if no PRIMARY KEY exists, the same values for a single UNIQUE constraint).

PGD handles this situation by retaining the most recently inserted tuple of the two according to the originating node's timestamps. (A user-defined conflict handler
can override this behavior.)

This conflict generates the insert_exists conflict type, which is by default resolved by choosing the newer row, based on commit time, and keeping only that
one (update_if_newer resolver). You can configure other resolvers. See Conflict resolution for details.

To resolve this conflict type, you can also use column-level conflict resolution and user-defined conflict triggers.

You can effectively eliminate this type of conflict by using global sequences.

INSERT operations that violate multiple UNIQUE constraints

An INSERT / INSERT conflict can violate more than one UNIQUE constraint, of which one might be the PRIMARY KEY . If a new row violates more than one

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 179

UNIQUE constraint and that results in a conflict against more than one other row, then applying the replication change produces a
multiple_unique_conflicts conflict.

In case of such a conflict, you must remove some rows for replication to continue. Depending on the resolver setting for multiple_unique_conflicts , the
apply process either exits with error, skips the incoming row, or deletes some of the rows. The deletion tries to preserve the row with the correct PRIMARY KEY
and delete the others.

WarningWarning

In case of multiple rows conflicting this way, if the result of conflict resolution is to proceed with the insert operation, some of the data is always deleted.

You can also define a different behavior using a conflict trigger.

UPDATE/UPDATE conflicts

Where two concurrent UPDATE operations on different nodes change the same tuple but not its PRIMARY KEY , an UPDATE / UPDATE conflict can occur on
replay.

These can generate different conflict kinds based on the configuration and situation. If the table is configured with row version conflict detection, then the original
(key) row is compared with the local row. If they're different, the update_differing conflict is generated. When using origin conflict detection, the origin of
the row is checked. (The origin is the node that the current local row came from.) If that changed, the update_origin_change conflict is generated. In all
other cases, the UPDATE is normally applied without generating a conflict.

Both of these conflicts are resolved the same way as insert_exists , described in INSERT/INSERT conflicts.

UPDATE conflicts on the PRIMARY KEY

PGD can't currently perform conflict resolution where the PRIMARY KEY is changed by an UPDATE operation. You can update the primary key, but you must
ensure that no conflict with existing values is possible.

Conflicts on the update of the primary key are divergent conflicts and require manual intervention.

Updating a primary key is possible in Postgres, but there are issues in both Postgres and PGD.

A simple schema provides an example that explains:

Updating the Primary Key column is possible, so this SQL succeeds:

However, suppose the table has multiple rows:

Some UPDATE operations succeed:

CREATECREATE TABLETABLE pktest (pk integer primaryprimary keykey, val
integer);
INSERTINSERT INTOINTO pktest VALUESVALUES
(1,1);

UPDATEUPDATE pktest SETSET pk==2 WHEREWHERE
pk==1;

INSERTINSERT INTOINTO pktest VALUESVALUES
(3,3);

UPDATEUPDATE pktest SETSET pk==4 WHEREWHERE
pk==3;

SELECTSELECT ** FROMFROM pktest;
 pk |
val

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 180

Other UPDATE operations fail with constraint errors:

So for Postgres applications that update primary keys, be careful to avoid runtime errors, even without PGD.

With PGD, the situation becomes more complex if UPDATE operations are allowed from multiple locations at same time.

Executing these two changes concurrently works:

Executing these next two changes concurrently causes a divergent error, since both changes are accepted. But applying the changes on the other node results in
update_missing conflicts.

This scenario leaves the data different on each node:

----+-----
 2 |
1
 4 |
3
(2 rowsrows)

UPDATEUPDATE pktest SETSET pk==4 WHEREWHERE
pk==2;
ERROR: duplicate keykey value violates uniqueunique constraintconstraint
"pktest_pkey"
DETAIL: KeyKey (pk)==(4) already existsexists

node1: UPDATEUPDATE pktest SETSET pk==pk++1 WHEREWHERE pk ==
2;
node2: UPDATEUPDATE pktest SETSET pk==pk++1 WHEREWHERE pk ==
4;

SELECTSELECT ** FROMFROM pktest;
 pk |
val
----+-----
 3 |
1
 5 |
3
(2 rowsrows)

node1: UPDATEUPDATE pktest SETSET pk==1 WHEREWHERE pk ==
3;
node2: UPDATEUPDATE pktest SETSET pk==2 WHEREWHERE pk ==
3;

node1:
SELECTSELECT ** FROMFROM pktest;
 pk |
val
----+-----
 1 |
1
 5 |
3
(2 rowsrows)

node2:
SELECTSELECT ** FROMFROM pktest;
 pk |
val
----+-----
 2 |
1
 5 |
3
(2 rowsrows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 181

You can identify and resolve this situation using LiveCompare.

Concurrent conflicts present problems. Executing these two changes concurrently isn't easy to resolve:

Both changes are applied locally, causing a divergence between the nodes. But the apply on the target fails on both nodes with a duplicate key-value violation error.
This error causes the replication to halt and requires manual resolution.

You can avoid this duplicate key violation error, and replication doesn't break, if you set the conflict_type update_pkey_exists to skip , update , or
update_if_newer . This approach can still lead to divergence depending on the nature of the update.

You can avoid divergence in cases where the same old key is being updated by the same new key concurrently by setting update_pkey_exists to
update_if_newer . However, in certain situations, divergence occurs even with update_if_newer , namely when two different rows both are updated

concurrently to the same new primary key.

As a result, we recommend strongly against allowing primary key UPDATE operations in your applications, especially with PGD. If parts of your application change
primary keys, then to avoid concurrent changes, make those changes using Eager Replication.

WarningWarning

In case the conflict resolution of update_pkey_exists conflict results in update, one of the rows is always deleted.

UPDATE operations that violate multiple UNIQUE constraints

Like INSERT operations that violate multiple UNIQUE constraints, when an incoming UPDATE violates more than one UNIQUE index (or the PRIMARY KEY),
PGD raises a multiple_unique_conflicts conflict.

PGD supports deferred unique constraints. If a transaction can commit on the source, then it applies cleanly on target, unless it sees conflicts. However, you can't
use a deferred primary key as a REPLICA IDENTITY, so the use cases are already limited by that and the warning about using multiple unique constraints.

UPDATE/DELETE conflicts

One node can update a row that another node deletes at ths same time. In this case an UPDATE / DELETE conflict can occur on replay.

If the deleted row is still detectable (the deleted row wasn't removed by VACUUM), the update_recently_deleted conflict is generated. By default, the
UPDATE is skipped, but you can configure the resolution for this. See Conflict resolution for details.

The database can clean up the deleted row by the time the UPDATE is received in case the local node is lagging behind in replication. In this case, PGD can't
differentiate between UPDATE / DELETE conflicts and INSERT/UPDATE conflicts. It generates the update_missing conflict.

Another type of conflicting DELETE and UPDATE is a DELETE that comes after the row was updated locally. In this situation, the outcome depends on the type
of conflict detection used. When using the default, origin conflict detection, no conflict is detected, leading to the DELETE being applied and the row removed. If
you enable row version conflict detection, a delete_recently_updated conflict is generated. The default resolution for this conflict type is to apply the
DELETE and remove the row. However, you can configure this or a conflict trigger can handled it.

INSERT/UPDATE conflicts

When using the default asynchronous mode of operation, a node might receive an UPDATE of a row before the original INSERT was received. This can happen
only when three or more nodes are active (see Conflicts with three or more nodes).

When this happens, the update_missing conflict is generated. The default conflict resolver is insert_or_skip , though you can use insert_or_error
or skip instead. Resolvers that do insert-or-action first try to INSERT a new row based on data from the UPDATE when possible (when the whole row was

node1: UPDATEUPDATE pktest SETSET pk==6, val==8 WHEREWHERE pk ==
5;
node2: UPDATEUPDATE pktest SETSET pk==6, val==9 WHEREWHERE pk ==
5;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 182

https://www.enterprisedb.com/docs/livecompare/latest

received). For reconstructing the row to be possible, the table either needs to have REPLICA IDENTITY FULL or the row must not contain any toasted data.

See TOAST support details for more info about toasted data.

INSERT/DELETE conflicts

Similar to the INSERT / UPDATE conflict, the node might also receive a DELETE operation on a row for which it didn't yet receive an INSERT . This is again
possible only with three or more nodes set up (see Conflicts with three or more nodes).

PGD can't currently detect this conflict type. The INSERT operation doesn't generate any conflict type, and the INSERT is applied.

The DELETE operation always generates a delete_missing conflict, which is by default resolved by skipping the operation.

DELETE/DELETE conflicts

A DELETE / DELETE conflict arises when two different nodes concurrently delete the same tuple.

This scenario always generates a delete_missing conflict, which is by default resolved by skipping the operation.

This conflict is harmless since both DELETE operations have the same effect. You can safely ignroe one of them.

Conflicts with three or more nodes

If one node inserts a row that's then replayed to a second node and updated there, a third node can receive the UPDATE from the second node before it receives the
INSERT from the first node. This scenario is an INSERT / UPDATE conflict.

These conflicts are handled by discarding the UPDATE , which can lead to different data on different nodes. These are divergent conflicts.

This conflict type can happen only with three or more masters. At least two masters must be actively writing.

Also, the replication lag from node 1 to node 3 must be high enough to allow the following sequence of actions:

1. node 2 receives INSERT from node 1
2. node 2 performs UPDATE
3. node 3 receives UPDATE from node 2
4. node 3 receives INSERT from node 1

Using insert_or_error (or in some cases the insert_or_skip conflict resolver for the update_missing conflict type) is a viable mitigation strategy
for these conflicts. However, enabling this option opens the door for INSERT / DELETE conflicts:

1. node 1 performs UPDATE
2. node 2 performs DELETE
3. node 3 receives DELETE from node 2
4. node 3 receives UPDATE from node 1, turning it into an INSERT

If these are problems, we recommend tuning freezing settings for a table or database so that they're correctly detected as update_recently_deleted .

Another alternative is to use Eager Replication to prevent these conflicts.

INSERT / DELETE conflicts can also occur with three or more nodes. Such a conflict is identical to INSERT / UPDATE except with the UPDATE replaced by a
DELETE . This can result in a delete_missing conflict.

PGD could choose to make each INSERT into a check-for-recently deleted, as occurs with an update_missing conflict. However, the cost of doing this
penalizes the majority of users, so at this time it instead logs delete_missing .

Future releases will automatically resolve INSERT / DELETE anomalies by way of rechecks using LiveCompare when delete_missing conflicts occur.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 183

https://www.enterprisedb.com/docs/livecompare/latest/

Applications can perform these manually by checking the bdr.conflict_history_summary view.

These conflicts can occur in two main problem use cases:

INSERT followed rapidly by a DELETE , as can be used in queuing applications
Any case where the primary key identifier of a table is reused

Neither of these cases is common. We recommend not replicating the affected tables if these problem use cases occur.

PGD has problems with the latter case because PGD relies on the uniqueness of identifiers to make replication work correctly.

Applications that insert, delete, and then later reuse the same unique identifiers can cause difficulties. This is known as the ABA problem. PGD has no way of
knowing whether the rows are the current row, the last row, or much older rows.

Unique identifier reuse is also a business problem, since it is prevents unique identification over time, which prevents auditing, traceability, and sensible data
quality. Applications don't need to reuse unique identifiers.

Any identifier reuse that occurs in the time interval it takes for changes to pass across the system causes difficulties. Although that time might be short in normal
operation, down nodes can extend that interval to hours or days.

We recommend that applications don't reuse unique identifiers. If they do, take steps to avoid reuse in less than a year.

This problem doesn't occur in applications that use sequences or UUIDs.

Foreign key constraint conflicts

Conflicts between a remote transaction being applied and existing local data can also occur for FOREIGN KEY (FK) constraints.

PGD applies changes with session_replication_role = 'replica' , so foreign keys aren't rechecked when applying changes. In an active/active
environment, this situation can result in FK violations if deletes occur to the referenced table at the same time as inserts into the referencing table. This scenario is
similar to an INSERT / DELETE conflict.

In single-master Postgres, any INSERT / UPDATE that refers to a value in the referenced table must wait for DELETE operations to finish before they can gain a
row-level lock. If a DELETE removes a referenced value, then the INSERT / UPDATE fails the FK check.

In multi-master PGD. there are no inter-node row-level locks. An INSERT on the referencing table doesn't wait behind a DELETE on the referenced table, so both
actions can occur concurrently. Thus an INSERT / UPDATE on one node on the referencing table can use a value at the same time as a DELETE on the
referenced table on another node. The result, then, is a value in the referencing table that's no longer present in the referenced table.

In practice, this situation occurs if the DELETE operations occurs on referenced tables in separate transactions from DELETE operations on referencing tables,
which isn't a common operation.

In a parent-child relationship such as Orders -> OrderItems, it isn't typical to do this. It's more likely to mark an OrderItem as canceled than to remove it completely.
For reference/lookup data, it's unusual to completely remove entries at the same time as using those same values for new fact data.

While dangling FKs are possible, the risk of this in general is very low. Thus PGD doesn't impose a generic solution to cover this case. Once you understand the
situation in which this occurs, two solutions are possible.

The first solution is to restrict the use of FKs to closely related entities that are generally modified from only one node at a time, are infrequently modified, or where
the modification's concurrency is application mediated. This approach avoids any FK violations at the application level.

The second solution is to add triggers to protect against this case using the PGD-provided functions bdr.ri_fkey_trigger() and
bdr.ri_fkey_on_del_trigger() . When called as BEFORE triggers, these functions use FOREIGN KEY information to avoid FK anomalies by setting

referencing columns to NULL, much as if you had a SET NULL constraint. This approach rechecks all FKs in one trigger, so you need to add only one trigger per table
to prevent FK violation.

As an example, suppose you have two tables: Fact and RefData. Fact has an FK that references RefData. Fact is the referencing table, and RefData is the referenced
table. You need to add one trigger to each table.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 184

https://en.wikipedia.org/wiki/ABA_problem

Add a trigger that sets columns to NULL in Fact if the referenced row in RefData was already deleted:

Add a trigger that sets columns to NULL in Fact at the time a DELETE occurs on the RefData table:

Adding both triggers avoids dangling foreign keys.

TRUNCATE conflicts

TRUNCATE behaves similarly to a DELETE of all rows but performs this action by physically removing the table data rather than row-by-row deletion. As a result,
row-level conflict handling isn't available, so TRUNCATE commands don't generate conflicts with other DML actions, even when there's a clear conflict.

As a result, the ordering of replay can cause divergent changes if another DML is executed concurrently on other nodes to the TRUNCATE .

You can take one of the following actions:

Ensure TRUNCATE isn't executed alongside other concurrent DML. Rely on LiveCompare to highlight any such inconsistency.

Replace TRUNCATE with a DELETE statement with no WHERE clause. This approach is likely to have poor performance on larger tables.

Set bdr.truncate_locking = 'on' to set the TRUNCATE command’s locking behavior. This setting determines whether TRUNCATE obeys the
bdr.ddl_locking setting. This isn't the default behavior for TRUNCATE since it requires all nodes to be up. This configuration might not be possible or

wanted in all cases.

Exclusion constraint conflicts

PGD doesn't support exclusion constraints and prevents their creation.

If an existing standalone database is converted to a PGD database, then drop all exclusion constraints manually.

In a distributed asynchronous system, you can't ensure that no set of rows that violate the constraint exists because all transactions on different nodes are fully
isolated. Exclusion constraints lead to replay deadlocks where replay can't progress from any node to any other node because of exclusion constraint violations.

If you force PGD to create an exclusion constraint, or you don't drop existing ones when converting a standalone database to PGD, expect replication to break. To
get it to progress again, remove or alter the local tuples that an incoming remote tuple conflicts with so that the remote transaction can be applied.

Data conflicts for roles and tablespace differences

CREATECREATE TRIGGERTRIGGER
bdr_replica_fk_iu_trg
 BEFOREBEFORE INSERTINSERT OROR UPDATEUPDATE ONON fact
 FORFOR EACHEACH ROWROW
 EXECUTEEXECUTE PROCEDUREPROCEDURE bdr.ri_fkey_trigger();

ALTERALTER TABLETABLE fact
 ENABLEENABLE REPLICA TRIGGERTRIGGER bdr_replica_fk_iu_trg;

CREATECREATE TRIGGERTRIGGER bdr_replica_fk_d_trg
 BEFOREBEFORE DELETEDELETE ONON refdata
 FORFOR EACHEACH ROWROW
 EXECUTEEXECUTE PROCEDUREPROCEDURE
bdr.ri_fkey_on_del_trigger();

ALTERALTER TABLETABLE refdata
 ENABLEENABLE REPLICA TRIGGERTRIGGER
bdr_replica_fk_d_trg;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 185

https://www.enterprisedb.com/docs/livecompare/latest

Conflicts can also arise where nodes have global (Postgres-system-wide) data, like roles, that differ. This conflict can result in operations—mainly DDL —that can
run successfully and commit on one node but then fail to apply to other nodes.

For example, node1 might have a user named fred, and that user wasn't created on node2. If fred on node1 creates a table, the table is replicated with its owner set
to fred. When the DDL command is applied to node2, the DDL fails because there's no user named fred. This failure generates an error in the Postgres logs.

Administrator intervention is required to resolve this conflict by creating the user fred in the database where PGD is running. You can set
bdr.role_replication = on to resolve this in future.

Lock conflicts and deadlock aborts

Because PGD writer processes operate much like normal user sessions, they're subject to the usual rules around row and table locking. This can sometimes lead to
PGD writer processes waiting on locks held by user transactions or even by each other.

Relevant locking includes:

Explicit table-level locking (LOCK TABLE ...) by user sessions
Explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions
Implicit locking because of row UPDATE , INSERT , or DELETE operations, either from local activity or from replication from other nodes

A PGD writer process can deadlock with a user transaction, where the user transaction is waiting on a lock held by the writer process and vice versa. Two writer
processes can also deadlock with each other. Postgres's deadlock detector steps in and terminates one of the problem transactions. If the PGD writer process is
terminated, it retries and generally succeeds.

All these issues are transient and generally require no administrator action. If a writer process is stuck for a long time behind a lock on an idle user session, the
administrator can terminate the user session to get replication flowing again. However, this is no different from a user holding a long lock that impacts another user
session.

Use of the log_lock_waits facility in Postgres can help identify locking related replay stalls.

Divergent conflicts

Divergent conflicts arise when data that should be the same on different nodes differs unexpectedly. Divergent conflicts shouldn't occur, but not all such conflicts
can be reliably prevented at the time of writing.

Changing the PRIMARY KEY of a row can lead to a divergent conflict if another node changes the key of the same row before all nodes have replayed the change.
Avoid changing primary keys, or change them only on one designated node.

Divergent conflicts involving row data generally require administrator action to manually adjust the data on one of the nodes to be consistent with the other one.
Such conflicts don't arise so long as you use PGD as documented and avoid settings or functions marked as unsafe.

The administrator must manually resolve such conflicts. You might need to use the advanced options such as bdr.ddl_replication and
bdr.ddl_locking depending on the nature of the conflict. However, careless use of these options can make things much worse and create a conflict that

generic instructions can't address.

TOAST support details

Postgres uses out-of-line storage for larger columns called TOAST.

The TOAST values handling in logical decoding (which PGD is built on top of) and logical replication is different from inline data stored as part of the main row in the
table.

The TOAST value is logged into the transaction log (WAL) only if the value changed. This can cause problems, especially when handling UPDATE conflicts, because
an UPDATE statement that didn't change a value of a toasted column produces a row without that column. As mentioned in INSERT/UPDATE conflicts, PGD
reports an error if an update_missing conflict is resolved using insert_or_error and there are missing TOAST columns.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 186

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-LOCK-WAITS
https://www.postgresql.org/docs/current/storage-toast.html

However, more subtle issues than this one occur in case of concurrent workloads with asynchronous replication. (Eager transactions aren't affected.) Imagine, for
example, the following workload on an EDB Postgres Distributed cluster with three nodes called A, B, and C:

1. On node A: txn A1 does an UPDATE SET col1 = 'toast data...' and commits first.
2. On node B: txn B1 does UPDATE SET other_column = 'anything else'; and commits after A1.
3. On node C: the connection to node A lags behind.
4. On node C: txn B1 is applied first, it misses the TOASTed column in col1, but gets applied without conflict.
5. On node C: txn A1 conflicts (on update_origin_change) and is skipped.
6. Node C misses the toasted data from A1 forever.

This scenario isn't usually a problem when using PGD. (It is when using either built-in logical replication or plain pglogical for multi-master.) PGD adds its own
logging of TOAST columns when it detects a local UPDATE to a row that recently replicated a TOAST column modification and the local UPDATE isn't modifying
the TOAST. Thus PGD prevents any inconsistency for toasted data across different nodes. This situation causes increased WAL logging when updates occur on
multiple nodes, that is, when origin changes for a tuple. Additional WAL overhead is zero if all updates are made from a single node, as is normally the case with
PGD AlwaysOn architecture.

NoteNote

Running VACUUM FULL or CLUSTER on just the TOAST table without doing same on the main table removes metadata needed for the extra logging to
work. This means that, for a short period after such a statement, the protection against these concurrency issues isn't present.

WarningWarning

The additional WAL logging of TOAST is done using the BEFORE UPDATE trigger on standard Postgres. This trigger must be sorted alphabetically last
based on trigger name among all BEFORE UPDATE triggers on the table. It's prefixed with zzzz_bdr_ to make this easier, but make sure you don't
create any trigger with a name that sorts after it. Otherwise you won't have the protection against the concurrency issues.

For the insert_or_error conflict resolution, the use of REPLICA IDENTITY FULL is still required.

None of these problems associated with toasted columns affect tables with REPLICA IDENTITY FULL . This setting always logs a toasted value as part of the
key since the whole row is considered to be part of the key. PGD can reconstruct the new row, filling the missing data from the key row. As a result, using REPLICA
IDENTITY FULL can increase WAL size significantly.

Avoiding or tolerating conflicts

In most cases, you can design the application to avoid or tolerate conflicts.

Conflicts can happen only if things are happening at the same time on multiple nodes. The simplest way to avoid conflicts is to only ever write to one node or to only
ever write to a specific row in a specific way from one specific node at a time.

This avoidance happens naturally in many applications. For example, many consumer applications allow only the owning user to change data, such as changing the
default billing address on an account. Such data changes seldom have update conflicts.

You might make a change just before a node goes down, so the change seems to be lost. You might then make the same change again, leading to two updates on
different nodes. When the down node comes back up, it tries to send the older change to other nodes. It's rejected because the last update of the data is kept.

For INSERT / INSERT conflicts, use global sequences to prevent this type of conflict.

For applications that assign relationships between objects, such as a room-booking application, applying update_if_newer might not give an acceptable
business outcome. That is, it isn't useful to confirm to two people separately that they have booked the same room. The simplest resolution is to use Eager
Replication to ensure that only one booking succeeds. More complex ways might be possible depending on the application. For example, you can assign 100 seats to
each node and allow those to be booked by a writer on that node. But if none are available locally, use a distributed locking scheme or Eager Replication after most
seats are reserved.

Another technique for ensuring certain types of updates occur only from one specific node is to route different types of transactions through different nodes. For
example:

Receiving parcels on one node but delivering parcels using another node
A service application where orders are input on one node and work is prepared on a second node and then served back to customers on another

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 187

Frequently, the best course is to allow conflicts to occur and design the application to work with PGD's conflict resolution mechanisms to cope with the conflict.

Conflict detection

PGD provides these mechanisms for conflict detection:

Origin conflict detection (default)
Row version conflict detection
Column-level conflict detection

Origin conflict detection

Origin conflict detection uses and relies on commit timestamps as recorded on the node the transaction originates from. This requires clocks to be in sync to work
correctly or to be within a tolerance of the fastest message between two nodes. If this isn't the case, conflict resolution tends to favor the node that's further ahead.
You can manage clock skew between nodes using the parameters bdr.maximum_clock_skew and bdr.maximum_clock_skew_action .

Row origins are available only if track_commit_timestamp = on .

Conflicts are first detected based on whether the replication origin changed, so conflict triggers are called in situations that might not turn out to be conflicts.
Hence, this mechanism isn't precise, since it can generate false-positive conflicts.

Origin info is available only up to the point where a row is frozen. Updates arriving for a row after it was frozen don't raise a conflict so are applied in all cases. This
is the normal case when adding a new node by bdr_init_physical , so raising conflicts causes many false-positive results in that case.

A node that was offline that reconnects and begins sending data changes can cause divergent errors if the newly arrived updates are older than the frozen rows that
they update. Inserts and deletes aren't affected by this situation.

We suggest that you don't leave down nodes for extended outages, as discussed in Node restart and down node recovery.

On EDB Postgres Extended Server and EDB Postgres Advanced Server, PGD holds back the freezing of rows while a node is down. This mechanism handles this
situation gracefully so you don't need to change parameter settings.

On other variants of Postgres, you might need to manage this situation with some care.

Freezing normally occurs when a row being vacuumed is older than vacuum_freeze_min_age xids from the current xid, which means that you need to
configure suitably high values for these parameters:

vacuum_freeze_min_age
vacuum_freeze_table_age
autovacuum_freeze_max_age

Choose values based on the transaction rate, giving a grace period of downtime before removing any conflict data from the database node. For example, when
vacuum_freeze_min_age is set to 500 million, a node performing 1000 TPS can be down for just over 5.5 days before conflict data is removed. The CommitTS

data structure takes on-disk space of 5 GB with that setting, so lower transaction rate systems can benefit from lower settings.

Initially recommended settings are:

Note that:

1 billion == 10GB
autovacuum_freeze_max_age == 1000000000

vacuum_freeze_min_age == 500000000

90% ofof autovacuum_freeze_max_age
vacuum_freeze_table_age == 900000000

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 188

You can set autovacuum_freeze_max_age only at node start.
You can set vacuum_freeze_min_age , so using a low value freezes rows early and can result in conflicts being ignored. You can also set
autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age for individual tables.

Running the CLUSTER or VACUUM FREEZE commands also freezes rows early and can result in conflicts being ignored.

Row version conflict detection

PGD provides the option to use row versioning and make conflict detection independent of the nodes' system clock.

Row version conflict detection requires that you enable three things. If any of these steps aren't performed correctly then origin conflict detection is used.

Enable check_full_tuple or the PGD node group.

Enable REPLICA IDENTITY FULL on all tables that use row version conflict detection.

Enable row version tracking on the table by using bdr.alter_table_conflict_detection . This function adds a column with a name you specify
and an UPDATE trigger that manages the new column value. The column is created as INTEGER type.

Although the counter is incremented only on UPDATE , this technique allows conflict detection for both UPDATE and DELETE .

This approach resembles Lamport timestamps and fully prevents the ABA problem for conflict detection.

NoteNote

The row-level conflict resolution is still handled based on the conflict resolution configuration even with row versioning. The way the row version is
generated is useful only for detecting conflicts. Don't rely on it as authoritative information about which version of row is newer.

To determine the current conflict resolution strategy used for a specific table, refer to the column conflict_detection of the view bdr.tables .

bdr.alter_table_conflict_detection

Allows the table owner to change how conflict detection works for a given table.

Synopsis

Parameters

relation — Name of the relation for which to set the new conflict detection method.
method — The conflict detection method to use.
column_name — The column to use for storing the column detection data. This can be skipped, in which case the column name is chosen based on the

conflict detection method. The row_origin method doesn't require an extra column for metadata storage.

The recognized methods for conflict detection are:

row_origin — Origin of the previous change made on the tuple (see Origin conflict detection). This is the only method supported that doesn't require an
extra column in the table.
row_version — Row version column (see Row version conflict detection).
column_commit_timestamp — Per-column commit timestamps (described in CLCD).

bdr.alter_table_conflict_detection(relation regclass,
 methodmethod text,
 column_name name DEFAULTDEFAULT
NULLNULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 189

column_modify_timestamp — Per-column modification timestamp (described in CLCD).

Notes

For more information about the difference between column_commit_timestamp and column_modify_timestamp conflict detection methods, see
Current versus commit timestamp.

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DML global lock on the relation for which column-level conflict resolution is being enabled.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction, and the changes are visible to the current transaction.

Only the owner of the relation can execute the bdr.alter_table_conflict_detection function unless bdr.backwards_compatibility is set
to 30618 or less.

WarningWarning

When changing the conflict detection method from one that uses an extra column to store metadata, that column is dropped.

WarningWarning

This function disables CAMO and gives a warning, as long as warnings aren't disabled with bdr.camo_enable_client_warnings .

List of conflict types

PGD recognizes the following conflict types, which can be used as the conflict_type parameter:

insert_exists — An incoming insert conflicts with an existing row by way of a primary key or a unique key/index.
update_differing — An incoming update's key row differs from a local row. This can happen only when using row version conflict detection.
update_origin_change — An incoming update is modifying a row that was last changed by a different node.
update_missing — An incoming update is trying to modify a row that doesn't exist.
update_recently_deleted — An incoming update is trying to modify a row that was recently deleted.
update_pkey_exists — An incoming update has modified the PRIMARY KEY to a value that already exists on the node that's applying the change.
multiple_unique_conflicts — The incoming row conflicts with multiple UNIQUE constraints/indexes in the target table.
delete_recently_updated — An incoming delete with an older commit timestamp than the most recent update of the row on the current node or

when using row version conflict detection.
delete_missing — An incoming delete is trying to remove a row that doesn't exist.
target_column_missing — The target table is missing one or more columns present in the incoming row.
source_column_missing — The incoming row is missing one or more columns that are present in the target table.
target_table_missing — The target table is missing.
apply_error_ddl — An error was thrown by Postgres when applying a replicated DDL command.

Conflict resolution

Most conflicts can be resolved automatically. PGD defaults to a last-update-wins mechanism or, more accurately, the update_if_newer conflict resolver. This
mechanism retains the most recently inserted or changed row of the two conflicting ones based on the same commit timestamps used for conflict detection. The
behavior in certain corner-case scenarios depends on the settings used for bdr.create_node_group and alternatively for bdr.alter_node_group .

PGD lets you override the default behavior of conflict resolution by using the following function.

bdr.alter_node_set_conflict_resolver

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 190

This function sets the behavior of conflict resolution on a given node.

Synopsis

Parameters

node_name — Name of the node that's being changed.
conflict_type — Conflict type for which to apply the setting (see List of conflict types).
conflict_resolver — Resolver to use for the given conflict type (see List of conflict resolvers).

Notes

Currently you can change only the local node. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function on each
of them.

The configuration change made by this function overrides any default behavior of conflict resolutions specified by bdr.create_node_group or
bdr.alter_node_group .

This function is transactional. You can roll back the changes, and they are visible to the current transaction.

List of conflict resolvers

Several conflict resolvers are available in PGD, with differing coverages of the conflict types they can handle:

error — Throws error and stops replication. Can be used for any conflict type.
skip — Skips processing the remote change and continues replication with the next change. Can be used for insert_exists , update_differing ,
update_origin_change , update_missing , update_recently_deleted , update_pkey_exists , delete_recently_updated ,
delete_missing , target_table_missing , target_column_missing , and source_column_missing conflict types.
skip_if_recently_dropped — Skips the remote change if it's for a table that doesn't exist downstream because it was recently (within one day)

dropped on the downstream. Throw an error otherwise. Can be used for the target_table_missing conflict type. skip_if_recently_dropped
conflict resolver can pose challenges if a table with the same name is re-created shortly after it's dropped. In that case, one of the nodes might see the DMLs
on the re-created table before it sees the DDL to re-create the table. It then incorrectly skips the remote data, assuming that the table is recently dropped,
and causes data loss. We hence recommend that you don't reuse the object names immediately after they're dropped along with this conflict resolver.
skip_transaction — Skips the whole transaction that generated the conflict. Can be used for apply_error_ddl conflict.
update_if_newer — Updates if the remote row was committed later (as determined by the wall clock of the originating node) than the conflicting local

row. If the timestamps are same, the node id is used as a tie-breaker to ensure that same row is picked on all nodes (higher nodeid wins). Can be used for
insert_exists , update_differing , update_origin_change , and update_pkey_exists conflict types.
update — Always performs the replicated action. Can be used for insert_exists (turns the INSERT into UPDATE), update_differing ,
update_origin_change , update_pkey_exists , and delete_recently_updated (performs the delete).
insert_or_skip — Tries to build a new row from available information sent by the origin and INSERT it. If there isn't enough information available to

build a full row, skips the change. Can be used for update_missing and update_recently_deleted conflict types.
insert_or_error — Tries to build new row from available information sent by origin and insert it. If there isn't enough information available to build full

row, throws an error and stops the replication. Can be used for update_missing and update_recently_deleted conflict types.
ignore — Ignores any missing target column and continues processing. Can be used for the target_column_missing conflict type.
ignore_if_null — Ignores a missing target column if the extra column in the remote row contains a NULL value. Otherwise, throws an error and stops

replication. Can be used for the target_column_missing conflict type.
use_default_value — Fills the missing column value with the default (including NULL if that's the column default) and continues processing. Any error

while processing the default or violation of constraints (that is, NULL default on NOT NULL column) stops replication. Can be used for the
source_column_missing conflict type.

The insert_exists , update_differing , update_origin_change , update_missing , multiple_unique_conflicts ,
update_recently_deleted , update_pkey_exists , delete_recently_updated , and delete_missing conflict types can also be resolved by

bdr.alter_node_set_conflict_resolver(node_name text,
 conflict_type text,
 conflict_resolver text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 191

user-defined logic using Conflict triggers.

This matrix helps you individuate the conflict types the conflict resolvers can handle.

insert_exists

upda
te_di
fferi
ng

update
_origin
_chang
e

upd
ate_
miss
ing

update_
recently
_deleted

updat
e_pke
y_exis
ts

delete_r
ecently_
updated

dele
te_
mis
sing

target_
column
_missin
g

source_
column
_missin
g

target
_table
_missi
ng

multiple
unique
conflicts

error X X X X X X X X X X X X

skip X X X X X X X X X X X X

skip_if_recently_dropped X

update_if_newer X X X X

update X X X X X X

insert_or_skip X X

insert_or_error X X

ignore X

ignore_if_null X

use_default_value X

conflict_trigger X X X X X X X X X

Default conflict resolvers

Conflict type Resolver

insert_exists update_if_newer

update_differing update_if_newer

update_origin_change update_if_newer

update_missing insert_or_skip

update_recently_deleted skip

update_pkey_exists update_if_newer

multiple_unique_conflicts error

delete_recently_updated skip

delete_missing skip

target_column_missing ignore_if_null

source_column_missing use_default_value

target_table_missing (see
note)

skip_if_recently_dropped

apply_error_ddl error

target_table_missingtarget_table_missing

This conflict type isn't detected on community Postgresql. If the target table is missing, it causes an error and halts replication. EDB Postgres servers
detect and handle missing target tables and can invoke the resolver.

List of conflict resolutions

The conflict resolution represents the kind of resolution chosen by the conflict resolver and corresponds to the specific action that was taken to resolve the conflict.

The following conflict resolutions are currently supported for the conflict_resolution parameter:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 192

apply_remote — The remote (incoming) row was applied.
skip — Processing of the row was skipped (no change was made locally).
merge — A new row was created, merging information from remote and local row.
user — User code (a conflict trigger) produced the row that was written to the target table.

Conflict logging

To ease diagnosing and handling multi-master conflicts, PGD, by default, logs every conflict into the bdr.conflict_history table. You can change this
behavior with more granularity with the following functions.

bdr.alter_node_set_log_config

Set the conflict logging configuration for a node.

Synopsis

Parameters

node_name — Name of the node that's being changed.
log_to_file — Whether to log to the node log file.
log_to_table — Whether to log to the bdr.conflict_history table.
conflict_type — Conflict types to log. NULL (the default) means all.
conflict_resolution — Conflict resolutions to log. NULL (the default) means all.

Notes

You can change only the local node. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function on each of them.

This function is transactional. You can roll back the changes, and they're visible to the current transaction.

Listing conflict logging configurations

The view bdr.node_log_config shows all the logging configurations. It lists the name of the logging configuration, where it logs, and the conflict type and
resolution it logs.

Logging conflicts to a table

If log_to_table is set to true, conflicts are logged to a table. The target table for conflict logging is bdr.conflict_history .

This table is range partitioned on the column local_time . The table is managed by autopartition. By default, a new partition is created for every day, and

bdr.alter_node_set_log_config(node_name text,
 log_to_file bool DEFAULTDEFAULT
truetrue,
 log_to_table bool DEFAULTDEFAULT truetrue,
 conflict_type text[] DEFAULTDEFAULT
NULLNULL,
 conflict_resolution text[] DEFAULTDEFAULT
NULLNULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 193

conflicts of the last one month are maintained. After that, the old partitions are dropped automatically. Autopartition creates between 7 and 14 partitions in
advance. bdr_superuser can change these defaults.

Since conflicts generated for all tables managed by PGD are logged to this table, it's important to ensure that only legitimate users can read the conflicted data.
PGD does this by defining ROW LEVEL SECURITY policies on the bdr.conflict_history table. Only owners of the tables are allowed to read conflicts on the
respective tables. If the underlying tables have RLS policies defined, enabled, and enforced, then even owners can't read the conflicts. RLS policies created with the
FORCE option also apply to owners of the table. In that case, some or all rows in the underlying table might not be readable even to the owner. So PGD also enforces
a stricter policy on the conflict log table.

The default role bdr_read_all_conflicts can be granted to users who need to see all conflict details logged to the bdr.conflict_history table
without also granting them bdr_superuser role.

The default role bdr_read_all_stats has access to a catalog view called bdr.conflict_history_summary , which doesn't contain user data, allowing
monitoring of any conflicts logged.

Conflict reporting

You can summarize conflicts logged to tables in reports. Reports allow application owners to identify, understand, and resolve conflicts and introduce application
changes to prevent them.

Data verification with LiveCompare

LiveCompare is a utility program designed to compare any two databases to verify that they are identical.

LiveCompare is included as part of the PGD stack and can be aimed at any pair of PGD nodes. By default, it compares all replicated tables and reports differences.
LiveCompare also works with non-PGD data sources such as Postgres and Oracle.

You can also use LiveCompare to continuously monitor incoming rows. You can stop and start it without losing context information, so you can run it at convenient
times.

LiveCompare allows concurrent checking of multiple tables. You can configure it to allow checking of a few tables or just a section of rows in a table. Checks are
performed by first comparing whole row hashes. If different, LiveCompare then compares whole rows. LiveCompare avoids overheads by comparing rows in useful-
sized batches.

If differences are found, they can be rechecked over time, allowing for the delays of eventual consistency.

See the LiveCompare documentation for further details.

16.2 Column-level conflict detection

SELECTSELECT nspname,
relname
, date_trunc('day', local_time) :: date ASAS
date
, count(**)
FROMFROM bdr.conflict_history
WHEREWHERE local_time >> date_trunc('day',
current_timestamp)
GROUPGROUP BYBY 1,2,3
ORDERORDER BYBY 1,2;

 nspname | relname | date |
count
---------+---------+------------+-------
 my_app | test | 2019--04--05 |
1
(1 rowrow)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 194

https://www.enterprisedb.com/docs/livecompare/latest/

By default, conflicts are resolved at row level. When changes from two nodes conflict, either the local or remote tuple is selected and the other is discarded. For
example, commit timestamps for the two conflicting changes might be compared and the newer one kept. This approach ensures that all nodes converge to the
same result and establishes commit-order-like semantics on the whole cluster.

However, in some cases it might be appropriate to resolve conflicts at the column level rather than the row level.

Consider a simple example, in which table t has two integer columns a and b and a single row (1,1) . On one node execute:

On another node, before receiving the preceding UPDATE , concurrently execute:

This sequence results in an UPDATE-UPDATE conflict. With the update_if_newer conflict resolution, the commit timestamps are compared, and the new row
version is kept. Assuming the second node committed last, the result is (1,100) , which effectively discards the change to column a.

For many use cases, this behavior is the desired and expected. However, for some use cases, this might be an issue. Consider, for example, a multi-node cluster
where each part of the application is connected to a different node, updating a dedicated subset of columns in a shared table. In that case, the different components
might conflict and overwrite changes.

For such use cases, it might be more appropriate to resolve conflicts on a given table at the column level. To achieve that, PGD tracks the timestamp of the last
change for each column separately and uses that to pick the most recent value, essentially performing update_if_newer .

Applied to the previous example, the result is (100,100) on both nodes, despite neither of the nodes ever seeing such a row.

When thinking about column-level conflict resolution, it can be useful to see tables as vertically partitioned, so that each update affects data in only one slice. This
approach eliminates conflicts between changes to different subsets of columns. In fact, vertical partitioning can even be a practical alternative to column-level
conflict resolution.

Column-level conflict resolution requires the table to have REPLICA IDENTITY FULL . The bdr.alter_table_conflict_detection function checks
that and fails with an error if this setting is missing.

Enabling and disabling column-level conflict resolution

Permissions requiredPermissions required

Column-level conflict detection uses the column_timestamps type. This requires the user to have at least the bdr_application role assigned to them.

The bdr.alter_table_conflict_detection() function manages column-level conflict resolution.

Example

This example creates a table test_table and then enables column-level conflict resolution on it:

UPDATEUPDATE t SETSET a ==
100

UPDATEUPDATE t SETSET b ==
100

db==# CREATECREATE TABLETABLE my_app.test_table (idid SERIAL PRIMARYPRIMARY KEYKEY, val
INT);
CREATECREATE TABLETABLE

db==# ALTERALTER TABLETABLE my_app.test_table REPLICA IDENTITY
FULLFULL;
ALTERALTER TABLETABLE

db==# SELECTSELECT bdr.alter_table_conflict_detection(
db(# 'my_app.test_table'::regclass,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 195

The function adds a cts column as specified in the function call. It also creates two triggers (BEFORE INSERT and BEFORE UPDATE) that are responsible for
maintaining timestamps in the new column before each change.

The new column specifies NOT NULL with a default value, which means that ALTER TABLE ... ADD COLUMN doesn't perform a table rewrite.

NoteNote

Avoid using columns with the bdr.column_timestamps data type for other purposes, as doing so can have negative effects. For example, it switches
the table to column-level conflict resolution, which doesn't work correctly without the triggers.

Listing table with column-level conflict resolution

You can list tables having column-level conflict resolution enabled with the following query. This query detects the presence of a column of type
bdr.column_timestamp .

bdr.column_timestamps_create

This function creates column-level conflict resolution. It's called within column_timestamp_enable .

Synopsis

Parameters

p_source — The two options are current or commit .
p_timestamp — Timestamp depends on the source chosen. If commit , then TIMESTAMP_SOURCE_COMMIT . If current , then
TIMESTAMP_SOURCE_CURRENT .

db(# 'column_modify_timestamp', 'cts');
 alter_table_conflict_detection

t

db==# \d my_app.test_table

SELECTSELECT nc.nspname,
c.relname
FROMFROM pg_attribute
a
JOINJOIN (pg_class c JOINJOIN pg_namespace nc ONON c.relnamespace ==
nc.oidoid)
 ONON a.attrelid == c.oidoid
JOINJOIN (pg_type t JOINJOIN pg_namespace nt ONON t.typnamespace ==
nt.oidoid)
 ONON a.atttypid == t.oidoid
WHEREWHERE NOTNOT pg_is_other_temp_schema(nc.oidoid)
 ANDAND nt.nspname == 'bdr'
 ANDAND t.typname == 'column_timestamps'
 ANDAND NOTNOT
a.attisdropped
 ANDAND c.relkind ININ ('r', 'v', 'f',
'p');

bdr.column_timestamps_create(p_source cstring, p_timestamp
timestampstz)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 196

DDL locking

When enabling or disabling column timestamps on a table, the code uses DDL locking to ensure that there are no pending changes from before the switch. This
approach ensures only conflicts with timestamps in both tuples or in neither of them are seen. Otherwise, the code might unexpectedly see timestamps in the local
tuple and NULL in the remote one. It also ensures that the changes are resolved the same way (column-level or row-level) on all nodes.

Current versus commit timestamp

An important decision is the timestamp to assign to modified columns.

By default, the timestamp assigned to modified columns is the current timestamp, as if obtained from clock_timestamp . This is simple, and for many cases it is
correct (for example, when the conflicting rows modify non-overlapping subsets of columns).

It can, however, have various unexpected effects:

The timestamp changes during statement execution. So, if an UPDATE affects multiple rows, each gets a slightly different timestamp. This means that the
effects of concurrent changes might get "mixed" in various ways, depending on how the changes performed on different nodes interleave.

The timestamp is unrelated to the commit timestamp. Using it to resolve conflicts means that the result isn't equivalent to the commit order, which means it
likely can't be serialized.

NoteNote

Statement and transaction timestamps might be added in the future, which will address issues with mixing effects of concurrent statements or
transactions. Still, neither of these options can ever produce results equivalent to commit order.

You can also use the actual commit timestamp, although this feature is considered experimental. To use the commit timestamp, set the last parameter to true
when enabling column-level conflict resolution:

You can disable it using bdr.column_timestamps_disable .

Commit timestamps currently have restrictions that are explained in Notes.

Inspecting column timestamps

The column storing timestamps for modified columns is maintained by triggers. Don't modify it directly. It can be useful to inspect the current timestamps value, for
example, while investigating how a conflict was resolved.

Three functions are useful for this purpose:

bdr.column_timestamps_to_text(bdr.column_timestamps)

This function returns a human-readable representation of the timestamp mapping and is used when casting the value to text :

SELECTSELECT bdr.column_timestamps_enable('test_table'::regclass, 'cts',
truetrue);

db==# selectselect cts::text fromfrom
test_table;

cts

 {sourcesource: currentcurrent, defaultdefault: 2018--09--23 19:24:52.118583++02, map: [2 : 2018--09--23
19:25:02.590677++02]}
(1 rowrow)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 197

bdr.column_timestamps_to_jsonb(bdr.column_timestamps)

This function turns a JSONB representation of the timestamps mapping and is used when casting the value to jsonb :

bdr.column_timestamps_resolve(bdr.column_timestamps, xid)

This function updates the mapping with the commit timestamp for the attributes modified by the most recent transaction if it already committed. This
matters only when using the commit timestamp. For example, in this case, the last transaction updated the second attribute (with attnum = 2):

Handling column conflicts using CRDT data types

By default, column-level conflict resolution picks the value with a higher timestamp and discards the other one. You can, however, reconcile the conflict in
different, more elaborate ways. For example, you can use CRDT types that allow merging the conflicting values without discarding any information.

Notes

The attributes modified by an UPDATE are determined by comparing the old and new row in a trigger. This means that if the attribute doesn't change a
value, it isn't detected as modified even if it's explicitly set. For example, UPDATE t SET a = a doesn't mark a as modified for any row. Similarly,
UPDATE t SET a = 1 doesn't mark a as modified for rows that are already set to 1 .

For INSERT statements, there's no old row to compare the new one to, so all attributes are considered to be modified, and they are assigned a new
timestamp. This condition applies even for columns that weren't included in the INSERT statement and received default values. PGD can detect the
attributes that have a default value but can't know if it was included automatically or specified explicitly.

db==# selectselect jsonb_pretty(cts::jsonb) fromfrom
test_table;
 jsonb_pretty

 {
++
 "map": {
++
 "2": "2018-09-23T19:24:52.118583+02:00" ++
 }, ++
 "source": "current", ++
 "default": "2018-09-23T19:24:52.118583+02:00"++

}
(1 rowrow)

test==# selectselect cts::jsonb fromfrom
test_table;

cts

 {"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default": "2018-09-
23T19:29:55.581823+02:00", "modified": [2]}
(1 rowrow)

db==# selectselect bdr.column_timestamps_resolve(cts, xmin)::jsonb fromfrom
test_table;
 column_timestamps_resolve

 {"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default": "2018-09-
23T19:29:55.581823+02:00"}
(1 rowrow)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 198

This situation effectively means column-level conflict resolution doesn't work for INSERT-INSERT conflicts even if the INSERT statements specify
different subsets of columns. The newer row has timestamps that are all newer than the older row.

By treating the columns independently, it's easy to violate constraints in a way that isn't possible when all changes happen on the same node. Consider, for
example, a table like this:

Assume one node does:

Another node concurrently does:

Each of those updates is valid when executed on the initial row and so passes on each node. But when replicating to the other node, the resulting row
violates the CHECK (A > b) constraint, and the replication stops until the issue is resolved manually.

The column storing timestamp mapping is managed automatically. Don't specify or override the value in your queries, as the results can be unpredictable.
(The value is ignored where possible.)

The timestamp mapping is maintained by triggers, but the order in which triggers execute matters. So if you have custom triggers that modify tuples and are
executed after the pgl_clcd_ triggers, the modified columns aren't detected correctly.

When using regular timestamps to order changes or commits, the conflicting changes might have exactly the same timestamp because two or more nodes
happened to generate the same timestamp. This risk isn't unique to column-level conflict resolution, as it can happen even for regular row-level conflict
resolution. The node id is the tie breaker in this situation. The higher node id wins. This approach ensures that the same changes are applied on all nodes.

A clock skew can occur between different nodes. It can induce somewhat unexpected behavior, discarding seemingly newer changes because the
timestamps are inverted. However, you can manage clock skew between nodes using the parameters bdr.maximum_clock_skew and
bdr.maximum_clock_skew_action .

16.3 Conflict-free replicated data types

Conflict-free replicated data types (CRDT) support merging values from concurrently modified rows instead of discarding one of the rows as traditional resolution
does.

Permissions RequiredPermissions Required

PGD CRDT require usage access to CRDT types, therefore a user must have at least the bdr_application role assigned to them.

Each CRDT type is implemented as a separate PostgreSQL data type with an extra callback added to the bdr.crdt_handlers catalog. The merge process
happens inside the PGD writer on the apply side without any user action needed.

CRDTs require the table to have column-level conflict resolution enabled, as described in CLCD.

The only action you need to take is to use a particular data type in CREATE/ALTER TABLE rather than standard built-in data types such as integer. For example,
consider the following table with one regular integer counter and a single row:

CREATE TABLE non_crdt_example (

CREATECREATE TABLETABLE t (idid INT PRIMARYPRIMARY KEYKEY, a INT, b INT, CHECKCHECK (a >>
b));
INSERTINSERT INTOINTO t VALUESVALUES (1, 1000,
1);

UPDATEUPDATE t SETSET a ==
100;

UPDATEUPDATE t SETSET b ==
500;

SELECTSELECT bdr.alter_node_group_config('group', ignore_redundant_updates :=:=
falsefalse);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 199

 id integer PRIMARY KEY,
 counter integer NOT NULL DEFAULT 0
);

INSERT INTO non_crdt_example (id) VALUES (1);

Suppose you issue the following SQL on two nodes at same time:

UPDATE non_crdt_example
 SET counter = counter + 1 -- "reflexive" update
 WHERE id = 1;

After both updates are applied, you can see the resulting values using this query:

SELECT * FROM non_crdt_example WHERE id = 1;
 id | counter
 -----+-----------
 1 | 1
(1 row)

This code shows that you lost one of the increments due to the update_if_newer conflict resolver. If you use the CRDT counter data type instead, the result
looks like this:

CREATE TABLE crdt_example (
 id integer PRIMARY KEY,
 counter bdr.crdt_gcounter NOT NULL DEFAULT 0
);

ALTER TABLE crdt_example REPLICA IDENTITY FULL;

SELECT bdr.alter_table_conflict_detection('crdt_example',
 'column_modify_timestamp', 'cts');

INSERT INTO crdt_example (id) VALUES (1);

Again issue the following SQL on two nodes at same time, and then wait for the changes to be applied:

UPDATE crdt_example
 SET counter = counter + 1 -- "reflexive" update
 WHERE id = 1;

SELECT id, counter FROM crdt_example WHERE id = 1;
 id | counter
 -----+-----------
 1 | 2
(1 row)

This example shows that CRDTs correctly allow accumulator columns to work, even in the face of asynchronous concurrent updates that otherwise conflict.

The crdt_gcounter type is an example of state-based CRDT types that work only with reflexive UPDATE SQL, such as x = x + 1 , as the example shows.

The bdr.crdt_raw_value configuration option determines whether queries return the current value or the full internal state of the CRDT type. By default, only
the current numeric value is returned. When set to true , queries return representation of the full state. You can use the special hash operator (#) to request only
the current numeric value without using the special operator (the default behavior). If the full state is dumped using bdr.crdt_raw_value = on , then the
value can reload only with bdr.crdt_raw_value = on .

NoteNote

The bdr.crdt_raw_value applies formatting only of data returned to clients, that is, simple column references in the select list. Any column

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 200

references in other parts of the query (such as WHERE clause or even expressions in the select list) might still require use of the # operator.

Another class of CRDT data types is referred to as delta CRDT types. These are a special subclass of operation-based CRDTs.

With delta CRDTs, any update to a value is compared to the previous value on the same node. Then a change is applied as a delta on all other nodes.

CREATE TABLE crdt_delta_example (
 id integer PRIMARY KEY,
 counter bdr.crdt_delta_counter NOT NULL DEFAULT 0
);

ALTER TABLE crdt_delta_example REPLICA IDENTITY FULL;

SELECT bdr.alter_table_conflict_detection('crdt_delta_example',
 'column_modify_timestamp', 'cts');

INSERT INTO crdt_delta_example (id) VALUES (1);

Suppose you issue the following SQL on two nodes at same time:

UPDATE crdt_delta_example
 SET counter = 2 -- notice NOT counter = counter + 2
 WHERE id = 1;

After both updates are applied, you can see the resulting values using this query:

SELECT id, counter FROM crdt_delta_example WHERE id = 1;
 id | counter
 -----+---------
 1 | 4
(1 row)

With a regular integer column, the result is 2 . But when you update the row with a delta CRDT counter, you start with the OLD row version, make a NEW row
version, and send both to the remote node. There, compare them with the version found there (e.g., the LOCAL version). Standard CRDTs merge the NEW and the
LOCAL version, while delta CRDTs compare the OLD and NEW versions and apply the delta to the LOCAL version.

The CRDT types are installed as part of bdr into the bdr schema. For convenience, the basic operators (+ , # and !) and a number of common aggregate
functions (min , max , sum , and avg) are created in pg_catalog . Thus they are available without having to tweak search_path .

An important question is how query planning and optimization works with these new data types. CRDT types are handled transparently. Both ANALYZE and the
optimizer work, so estimation and query planning works fine without having to do anything else.

State-based and operation-based CRDTs

Following the notation from [1], both operation-based and state-based CRDTs are implemented.

Operation-based CRDT types (CmCRDT)

The implementation of operation-based types is trivial because the operation isn't transferred explicitly but computed from the old and new row received from the
remote node.

Currently, these operation-based CRDTs are implemented:

crdt_delta_counter — bigint counter (increments/decrements)
crdt_delta_sum — numeric sum (increments/decrements)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 201

These types leverage existing data types with a little bit of code to compute the delta. For example, crdt_delta_counter is a domain on a bigint .

This approach is possible only for types for which the method for computing the delta is known, but the result is simple and cheap (both in terms of space and CPU)
and has a couple of added benefits. For example, it can leverage operators/syntax for the underlying data type.

The main disadvantage is that you can't reset this value reliably in an asynchronous and concurrent environment.

NoteNote

Implementing more complicated operation-based types by creating custom data types is possible, storing the state and the last operation. (Every change
is decoded and transferred, so multiple operations aren't needed). But at that point, the main benefits (simplicity, reuse of existing data types) are lost
without gaining any advantage compared to state-based types (for example, still no capability to reset) except for the space requirements. (A per-node
state isn't needed.)

State-based CRDT types (CvCRDT)

State-based types require a more complex internal state and so can't use the regular data types directly the way operation-based types do.

Currently, four state-based CRDTs are implemented:

crdt_gcounter — bigint counter (increment-only)
crdt_gsum — numeric sum/counter (increment-only)
crdt_pncounter — bigint counter (increments/decrements)
crdt_pnsum — numeric sum/counter (increments/decrements)

The internal state typically includes per-node information, increasing the on-disk size but allowing added benefits. The need to implement custom data types
implies more code (in/out functions and operators).

The advantage is the ability to reliably reset the values, a somewhat self-healing nature in the presence of lost changes (which doesn't happen in a cluster that
operates properly), and the ability to receive changes from other than source nodes.

Consider, for example, that a value is modified on node A, and the change gets replicated to B but not C due to network issue between A and C. If B modifies the
value and this change gets replicated to C, it includes even the original change from A. With operation-based CRDTs, node C doesn't receive the change until the A-C
network connection starts working again.

The main disadvantages of CvCRDTs are higher costs in terms of disk space and CPU usage. A bit of information for each node is needed, including nodes that were
already removed from the cluster. The complex nature of the state (serialized into varlena types) means increased CPU use.

Disk-space requirements

An important consideration is the overhead associated with CRDT types, particularly the on-disk size.

For operation-based types, this is trivial because the types are merely domains on top of other types. They have the same disk space requirements no matter how
many nodes are there:

crdt_delta_counter — Same as bigint (8 bytes)
crdt_delta_sum — Same as numeric (variable, depending on precision and scale)

There's no dependency on the number of nodes because operation-based CRDT types don't store any per-node information.

For state-based types, the situation is more complicated. All the types are variable length (stored essentially as a bytea column) and consist of a header and a
certain amount of per-node information for each node that modified the value.

For the bigint variants, formulas computing approximate size are:

crdt_gcounter — 32B (header) + N * 12B (per-node)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 202

crdt_pncounter -— 48B (header) + N * 20B (per-node)

N denotes the number of nodes that modified this value.

For the numeric variants, there's no exact formula because both the header and per-node parts include numeric variable-length values. To give you an idea of
how many such values you need to keep:

crdt_gsum
fixed: 20B (header) + N * 4B (per-node)
variable: (2 + N) numeric values

crdt_pnsum
fixed: 20B (header) + N * 4B (per-node)
variable: (4 + 2 * N) numeric values

NoteNote

It doesn't matter how many nodes are in the cluster if the values are never updated on multiple nodes. It also doesn't matter whether the updates were
concurrent (causing a conflict).

In addition, it doesn't matter how many of those nodes were already removed from the cluster. There's no way to compact the state yet.

CRDT types versus conflicts handling

As tables can contain both CRDT and non-CRDT columns (most columns are expected to be non-CRDT), you need to do both the regular conflict resolution and CRDT
merge.

The conflict resolution happens first and is responsible for deciding the tuple to keep (applytuple) and the one to discard. The merge phase happens next, merging
data for CRDT columns from the discarded tuple into the applytuple.

NoteNote

This handling makes CRDT types somewhat more expensive compared to plain conflict resolution because the merge needs to happen every time. This is
the case even when the conflict resolution can use one of the fast paths (such as those modified in the current transaction).

CRDT types versus conflict reporting

By default, detected conflicts are individually reported. Without CRDT types, this makes sense because the conflict resolution essentially throws away half of the
available information (local or remote row, depending on configuration). This presents a data loss.

CRDT types allow both parts of the information to be combined without throwing anything away, eliminating the data loss issue. This approach makes the conflict
reporting unnecessary.

For this reason, conflict reporting is skipped when the conflict can be fully resolved by CRDT merge. Each column must meet at least one of these two conditions:

The values in local and remote tuple are the same (NULL or equal).
It uses a CRDT data type and so can be merged.

NoteNote

Conflict reporting is also skipped when there are no CRDT columns but all values in local/remote tuples are equal.

Resetting CRDT values

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 203

Resetting CRDT values is possible but requires special handling. The asynchronous nature of the cluster means that different nodes might see the reset operation at
different places in the change stream no matter how it's implemented. Different nodes might also initiate a reset concurrently, that is, before observing the reset
from the other node.

In other words, to make the reset operation behave correctly, it needs to be commutative with respect to the regular operations. Many naive ways to reset a value
that might work well on a single-node fail for this reason.

For example, the simplest approach to resetting a value might be:

UPDATE crdt_table SET cnt = 0 WHERE id = 1;

With state-based CRDTs this doesn't work. It throws away the state for the other nodes but only locally. It's added back by merge functions on remote nodes,
causing diverging values and eventually receiving it back due to changes on the other nodes.

With operation-based CRDTs, this might seem to work because the update is interpreted as a subtraction of -cnt . But it works only in the absence of concurrent
resets. Once two nodes attempt to do a reset at the same time, the delta is applied twice, getting a negative value (which isn't expected from a reset).

It might also seem that you can use DELETE + INSERT as a reset, but this approach has a couple of weaknesses, too. If the row is reinserted with the same key,
it's not guaranteed that all nodes see it at the same position in the stream of operations with respect to changes from other nodes. PGD specifically discourages
reusing the same primary key value since it can lead to data anomalies in concurrent cases.

State-based CRDT types can reliably handle resets using a special ! operator like this:

UPDATE tab SET counter = !counter WHERE ...;

"Reliably" means the values don't have the two issues of multiple concurrent resets and divergence.

Operation-based CRDT types can be reset reliably only using Eager Replication, since this avoids multiple concurrent resets. You can also use Eager Replication to
set either kind of CRDT to a specific value.

Implemented CRDT data types

Currently, six CRDT data types are implemented:

Grow-only counter and sum
Positive-negative counter and sum
Delta counter and sum

The counters and sums behave mostly the same, except that the counter types are integer based (bigint), while the sum types are decimal-based (numeric).

Additional CRDT types, described at [1], might be implemented later.

You can list the currently implemented CRDT data types with the following query:

grow-only counter (crdt_gcounter)

Supports only increments with nonnegative values (value + int and counter + bigint operators).

SELECTSELECT n.nspname, t.typname
FROMFROM bdr.crdt_handlers
c
JOINJOIN (pg_type t JOINJOIN pg_namespace n ONON t.typnamespace ==
n.oidoid)
 ONON t.oidoid == c.crdt_type_id;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 204

You can obtain the current value of the counter either using # operator or by casting it to bigint .

Isn't compatible with simple assignments like counter = value (which is common pattern when the new value is computed somewhere in the
application).

Allows simple reset of the counter using the ! operator (counter = !counter).

You can inspect the internal state using crdt_gcounter_to_text .

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 cnt bdr.crdt_gcounter NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4531); -- error: negative value

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id = 2;

-- error: minus operator not defined
UPDATE crdt_test SET cnt = cnt - 1 WHERE id = 1;

-- error: increment has to be non-negative
UPDATE crdt_test SET cnt = cnt + (-1) WHERE id = 1;

-- reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id = 1;

-- get current counter value
SELECT id, cnt::bigint, cnt FROM crdt_test;

-- show internal structure of counters
SELECT id, bdr.crdt_gcounter_to_text(cnt) FROM crdt_test;

grow-only sum (crdt_gsum)

Supports only increments with nonnegative values (sum + numeric).

You can obtain the current value of the sum either by using the # operator or by casting it to numeric .

Isn't compatible with simple assignments like sum = value , which is the common pattern when the new value is computed somewhere in the
application.

Allows simple reset of the sum using the ! operator (sum = !sum).

Can inspect internal state using crdt_gsum_to_text .

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 gsum bdr.crdt_gsum NOT NULL DEFAULT 0.0
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 205

INSERT INTO crdt_test VALUES (1, 0.0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to 1298.24
INSERT INTO crdt_test VALUES (3, -45.31); -- error: negative value

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment sum
UPDATE crdt_test SET gsum = gsum + 11.5 WHERE id = 1;
UPDATE crdt_test SET gsum = gsum + 120.33 WHERE id = 2;

-- error: minus operator not defined
UPDATE crdt_test SET gsum = gsum - 15.2 WHERE id = 1;

-- error: increment has to be non-negative
UPDATE crdt_test SET gsum = gsum + (-1.56) WHERE id = 1;

-- reset sum
UPDATE crdt_test SET gsum = !gsum WHERE id = 1;

-- get current sum value
SELECT id, gsum::numeric, gsum FROM crdt_test;

-- show internal structure of sums
SELECT id, bdr.crdt_gsum_to_text(gsum) FROM crdt_test;

positive-negative counter (crdt_pncounter)

Supports increments with both positive and negative values (through counter + int and counter + bigint operators).

You can obtain the current value of the counter either by using the # operator or by casting to bigint .

Isn't compatible with simple assignments like counter = value , which is the common pattern when the new value is computed somewhere in the
application.

Allows simple reset of the counter using the ! operator (counter = !counter).

You can inspect the internal state using crdt_pncounter_to_text .

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 cnt bdr.crdt_pncounter NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4531); -- initialized to -4531

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt + (-244) WHERE id = 3;

-- decrement counters
UPDATE crdt_test SET cnt = cnt - 73 WHERE id = 1;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 206

UPDATE crdt_test SET cnt = cnt - 19283 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt - (-12) WHERE id = 3;

-- get current counter value
SELECT id, cnt::bigint, cnt FROM crdt_test;

-- show internal structure of counters
SELECT id, bdr.crdt_pncounter_to_text(cnt) FROM crdt_test;

-- reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id = 1;

-- get current counter value after the reset
SELECT id, cnt::bigint, cnt FROM crdt_test;

positive-negative sum (crdt_pnsum)

Supports increments with both positive and negative values through sum + numeric .

You can obtain the current value of the sum either by using then # operator or by casting to numeric .

Isn't compatible with simple assignments like sum = value , which is the common pattern when the new value is computed somewhere in the
application.

Allows simple reset of the sum using the ! operator (sum = !sum).

You can inspect the internal state using crdt_pnsum_to_text .

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 pnsum bdr.crdt_pnsum NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to 1298.24
INSERT INTO crdt_test VALUES (3, -45.31); -- initialized to -45.31

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment sums
UPDATE crdt_test SET pnsum = pnsum + 1.44 WHERE id = 1;
UPDATE crdt_test SET pnsum = pnsum + 12.20 WHERE id = 2;
UPDATE crdt_test SET pnsum = pnsum + (-24.34) WHERE id = 3;

-- decrement sums
UPDATE crdt_test SET pnsum = pnsum - 7.3 WHERE id = 1;
UPDATE crdt_test SET pnsum = pnsum - 192.83 WHERE id = 2;
UPDATE crdt_test SET pnsum = pnsum - (-12.22) WHERE id = 3;

-- get current sum value
SELECT id, pnsum::numeric, pnsum FROM crdt_test;

-- show internal structure of sum
SELECT id, bdr.crdt_pnsum_to_text(pnsum) FROM crdt_test;

-- reset sum
UPDATE crdt_test SET pnsum = !pnsum WHERE id = 1;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 207

-- get current sum value after the reset
SELECT id, pnsum::numeric, pnsum FROM crdt_test;

delta counter (crdt_delta_counter)

Is defined a bigint domain, so works exactly like a bigint column.

Supports increments with both positive and negative values.

Is compatible with simple assignments like counter = value , which is common when the new value is computed somewhere in the application.

There's no simple way to reset the value reliably.

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 cnt bdr.crdt_delta_counter NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4531); -- initialized to -4531

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt + (-244) WHERE id = 3;

-- decrement counters
UPDATE crdt_test SET cnt = cnt - 73 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt - 19283 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt - (-12) WHERE id = 3;

-- get current counter value
SELECT id, cnt FROM crdt_test;

delta sum (crdt_delta_sum)

Is defined as a numeric domain so works exactly like a numeric column.

Supports increments with both positive and negative values.

Is compatible with simple assignments like sum = value , which is common when the new value is computed somewhere in the application.

There's no simple way to reset the value reliably.

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 dsum bdr.crdt_delta_sum NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129.824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4.531); -- initialized to -4531

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 208

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET dsum = dsum + 1.32 WHERE id = 1;
UPDATE crdt_test SET dsum = dsum + 12.01 WHERE id = 2;
UPDATE crdt_test SET dsum = dsum + (-2.4) WHERE id = 3;

-- decrement counters
UPDATE crdt_test SET dsum = dsum - 7.33 WHERE id = 1;
UPDATE crdt_test SET dsum = dsum - 19.83 WHERE id = 2;
UPDATE crdt_test SET dsum = dsum - (-1.2) WHERE id = 3;

-- get current counter value
SELECT id, cnt FROM crdt_test;

[1] https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

16.4 Eager conflict resolution

Eager conflict resolution (also known as Eager Replication) prevents conflicts by aborting transactions that conflict with each other with serializable errors during
the COMMIT decision process.

You configure it using commit scopes as one of the conflict resolution options for Group Commit.

Usage

To enable Eager conflict resolution, the client needs to switch to a commit scope, which uses it at session level or for individual transactions as shown here:

The client can continue to issue a COMMIT at the end of the transaction and let PGD manage the two phases:

In this case, the eager_scope commit scope is defined something like this:

Upgrading?Upgrading?

BEGINBEGIN;

SETSET LOCALLOCAL bdr.commit_scope ==
'eager_scope';

..... other commands
possible.....

COMMITCOMMIT;

SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'eager_scope',
 origin_node_group :=:= 'top_group',
 rulerule :=:= 'ALL (top_group) GROUP COMMIT (conflict_resolution = eager, commit_decision = raft) ABORT ON (timeout
= 60s)',
 wait_for_ready :=:=
truetrue
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 209

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

The old global commit scope doesn't exist anymore. The above command creates a scope that's the same as the old global scope with
bdr.global_commit_timeout set to 60s .

The commit scope group for the eager conflict resolution rule can only be ALL or MAJORITY . Where ALL is used, the commit_decision setting must also
be set to raft .

Error handling

Given that PGD manages the transaction, the client needs to check only the result of the COMMIT . This is advisable in any case, including single-node Postgres.

In case of an origin node failure, the remaining nodes eventually (after at least ABORT ON timeout) decide to roll back the globally prepared transaction. Raft
prevents inconsistent commit versus rollback decisions. However, this requires a majority of connected nodes. Disconnected nodes keep the transactions prepared
to eventually commit them (or roll back) as needed to reconcile with the majority of nodes that might have decided and made further progress.

Effects of Eager Replication in general

Increased abort rate

With single-node Postgres, or even with PGD in its default asynchronous replication mode, errors at COMMIT time are rare. The added synchronization step due to
the use of a commit scope using eager for conflict resolution also adds a source of errors. Applications need to be prepared to properly handle such errors (usually
by applying a retry loop).

The rate of aborts depends solely on the workload. Large transactions changing many rows are much more likely to conflict with other concurrent transactions.

Effects of MAJORITY and ALL node replication in general

Increased commit latency

Adding a synchronization step due to the use of a commit scope means more communication between the nodes, resulting in more latency at commit time. When
ALL is used in the commit scope, this also means that the availability of the system is reduced, since any node going down causes transactions to fail.

If one or more nodes are lagging behind, the round-trip delay in getting confirmations can be large, causing high latencies. ALL or MAJORITY node replication adds
roughly two network round trips (to the furthest peer node in the worst case). Logical standby nodes and nodes still in the process of joining or catching up aren't
included but eventually receive changes.

Before a peer node can confirm its local preparation of the transaction, it also needs to apply it locally. This further adds to the commit latency, depending on the
size of the transaction. This setting is independent of the synchronous_commit setting.

17 Parallel Apply

What is Parallel Apply?

Parallel Apply is a feature of PGD that allows a PGD node to use multiple writers per subscription. This behavior generally increases the throughput of a subscription
and improves replication performance.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 210

Configuring Parallel Apply

Two variables control Parallel Apply in PGD 5: bdr.max_writers_per_subscription (defaults to 8) and bdr.writers_per_subscription (defaults
to 2).

bdr.max_writers_per_subscription = 8
bdr.writers_per_subscription = 2

This configuration gives each subscription two writers. However, in some circumstances, the system might allocate up to eight writers for a subscription.

You can only change bdr.max_writers_per_subscription with a server restart.

You can change bdr.writers_per_subscription for a specific subscription without a restart by:

1. Halting the subscription using bdr.alter_subscription_disable .
2. Setting the new value.
3. Resuming the subscription using bdr.alter_subscription_enable .

First though, establish the name of the subscription using select * from bdr.subscription . For this example, the subscription name is
bdr_bdrdb_bdrgroup_node2_node1 .

When to use Parallel Apply

Parallel Apply is always on by default and, for most operations, we recommend leaving it on.

Monitoring Parallel Apply

To support Parallel Apply's deadlock mitigation, PGD 5.2 adds columns to bdr.stat_subscription . The new columns are nprovisional_waits ,
ntuple_waits , and ncommmit_waits . These are metrics that indicate how well Parallel Apply is managing what previously would have been deadlocks.

They don't reflect overall system performance.

The nprovisional_waits value reflects the number of operations on the same tuples being performed by concurrent apply transactions. These are provisional
waits that aren't actually waiting yet but could.

If a tuple's write needs to wait until it can be safely applied, it's counted in ntuple_waits . Fully applied transactions that waited before being committed are
counted in ncommit_waits .

Disabling Parallel Apply

To disable Parallel Apply, set bdr.writers_per_subscription to 1 .

Deadlock mitigation

SELECTSELECT bdr.alter_subscription_disable
('bdr_bdrdb_bdrgroup_node2_node1');

UPDATEUPDATE
bdr.subscription
SETSET num_writers ==
4
WHEREWHERE sub_name ==
'bdr_bdrdb_bdrgroup_node2_node1';

SELECTSELECT bdr.alter_subscription_enable
('bdr_bdrdb_bdrgroup_node2_node1');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 211

When Parallel Apply is operating, the transactional changes from the subscription are written by multiple writers. However, each writer ensures that the final
commit of its transaction doesn't violate the commit order as executed on the origin node. If there's a violation, an error is generated and the transaction can be
rolled back.

This mechanism previously meant that when the following are all true, the resulting error could manifest as a deadlock:

A transaction is pending commit and modifies a row that another transaction needs to change.
That other transaction executed on the origin node before the pending transaction did.
The pending transaction took out a lock request.

Additionally, handling the error could increase replication lag, due to a combination of the time taken:

To detect the deadlock
For the client to roll back its transaction
For indirect garbage collection of the changes that were already applied
To redo the work

This is where Parallel Apply’s deadlock mitigation, introduced in PGD 5.2, can help. For any transaction, Parallel Apply looks at transactions already scheduled for
any row (tuple) that the current transaction wants to write. If it finds one, the row is marked as needing to wait until the other transaction is committed before
applying its change to the row. This approach ensures that rows are written in the correct order.

Parallel Apply Support

Up to and including PGD 5.1, don't use Parallel Apply with Group Commit, CAMO, and Eager Replication. Disable Parallel Apply in these scenarios. If, using PGD 5.1
or earlier, you're experiencing a large number of deadlocks, you might also want to disable Parallel Apply or consider upgrading.

From PGD 5.2, Parallel Apply works with CAMO. It isn't compatible with Group Commit or Eager Replication, so disable it if Group Commit or Eager Replication are in
use.

18 Replication sets

A replication set is a group of tables that a PGD node can subscribe to. You can use replication sets to create more complex replication topologies than regular
symmetric multi-master where each node is an exact copy of the other nodes.

Every PGD group creates a replication set with the same name as the group. This replication set is the default replication set, which is used for all user tables and
DDL replication. All nodes are subscribed to it. In other words, by default all user tables are replicated between all nodes.

Using replication sets

You can create replication sets using bdr.create_replication_set , specifying whether to include insert, update, delete, or truncate actions. One option
lets you add existing tables to the set, and a second option defines whether to add tables when they're created.

You can also manually define the tables to add or remove from a replication set.

Tables included in the replication set are maintained when the node joins the cluster and afterwards.

Once the node is joined, you can still remove tables from the replication set, but you must add new tables using a resync operation.

By default, a newly defined replication set doesn't replicate DDL or PGD administration function calls. Use bdr.replication_set_add_ddl_filter to
define the commands to replicate.

PGD creates replication set definitions on all nodes. Each node can then be defined to publish or subscribe to each replication set using
bdr.alter_node_replication_sets .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 212

You can use functions to alter these definitions later or to drop the replication set.

NoteNote

Don't use the default replication set for selective replication. Don't drop or modify the default replication set on any of the PGD nodes in the cluster, as it's
also used by default for DDL replication and administration function calls.

Behavior of partitioned tables

PGD supports partitioned tables transparently, meaning that you can add a partitioned table to a replication set.

Changes that involve any of the partitions are replicated downstream.

NoteNote

When partitions are replicated through a partitioned table, the statements executed directly on a partition are replicated as they were executed on the
parent table. The exception is the TRUNCATE command, which always replicates with the list of affected tables or partitions.

You can add individual partitions to the replication set, in which case they're replicated like regular tables, that is, to the table of the same name as the partition on
the downstream. This behavior has some performance advantages if the partitioning definition is the same on both provider and subscriber, as the partitioning logic
doesn't have to be executed.

NoteNote

If a root partitioned table is part of any replication set, memberships of individual partitions are ignored. Only the membership of that root table is taken
into account.

Behavior with foreign keys

A foreign key constraint ensures that each row in the referencing table matches a row in the referenced table. Therefore, if the referencing table is a member of a
replication set, the referenced table must also be a member of the same replication set.

The current version of PGD doesn't automatically check for or enforce this condition. When adding a table to a replication set, the database administrator must
make sure that all the tables referenced by foreign keys are also added.

You can use the following query to list all the foreign keys and replication sets that don't satisfy this requirement. The referencing table is a member of the
replication set, while the referenced table isn't.

SELECTSELECT
t1.relname,

t1.nspname,

fk.conname,

t1.set_name
 FROMFROM bdr.tablestables ASAS t1
 JOINJOIN pg_catalog.pg_constraint ASAS
fk
 ONON fk.conrelid ==
t1.relid
 ANDAND fk.contype == 'f'
 WHEREWHERE NOTNOT EXISTSEXISTS
(
 SELECTSELECT **
 FROMFROM bdr.tablestables ASAS t2
 WHEREWHERE t2.relid ==
fk.confrelid

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 213

The output of this query looks like the following:

This output means that table t2 is a member of replication set s2 , but the table referenced by the foreign key t2_x_fkey isn't.

The TRUNCATE CASCADE command takes into account the replication set membership before replicating the command. For example:

This becomes a TRUNCATE without cascade on all the tables that are part of the replication set only:

Replication set membership

You can add tables to or remove them from one or more replication sets. Doing so affects replication only of changes (DML) in those tables. Schema changes (DDL)
are handled by DDL replication set filters (see DDL replication filtering).

The replication uses the table membership in replication sets with the node replication sets configuration to determine the actions to replicate to which node. The
decision is done using the union of all the memberships and replication set options. Suppose that a table is a member of replication set A that replicates only
INSERT actions and replication set B that replicates only UPDATE actions. Both INSERT and UPDATE actions are replicated if the target node is also subscribed to
both replication set A and B.

You can control membership using bdr.replication_set_add_table and bdr.replication_set_remove_table .

Listing replication sets

You can list existing replication sets with the following query:

You can use this query to list all the tables in a given replication set:

Behavior with foreign keys shows a query that lists all the foreign keys whose referenced table isn't included in the same replication set as the referencing table.

Use the following SQL to show those replication sets that the current node publishes and subscribes from:

 ANDAND t2.set_name ==
t1.set_name
);

 relname | nspname | conname |
set_name
---------+---------+-----------+----------
 t2 | publicpublic | t2_x_fkey |
s2
(1 rowrow)

TRUNCATETRUNCATE table1
CASCADECASCADE;

TRUNCATETRUNCATE table1, referencing_table1, referencing_table2
.....

SELECTSELECT
set_name
FROMFROM
bdr.replication_sets;

SELECTSELECT nspname,
relname
FROMFROM bdr.tablestables
WHEREWHERE set_name ==
'myrepset';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 214

This code produces output like this:

To execute the same query against all nodes in the cluster, you can use the following query. This approach gets the replication sets associated with all nodes at the
same time.

This shows, for example:

DDL replication filtering

By default, the replication of all supported DDL happens by way of the default PGD group replication set. This replication is achieved using a DDL filter with the

 SELECTSELECT
node_id,
 node_name,
 pub_repsets,

sub_repsets
 FROMFROM bdr.local_node_summary;

 node_id | node_name | pub_repsets |
sub_repsets
------------+-----------+--
 1834550102 | s01db01 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
(1 rowrow)

WITHWITH node_repsets ASAS
(
 SELECTSELECT
jsonb_array_elements(
 bdr.run_on_all_nodes($$
 SELECTSELECT

node_id,
 node_name,
 pub_repsets,

sub_repsets
 FROMFROM bdr.local_node_summary;
 $$)::jsonb
) ASAS
j
)
SELECTSELECT j->->'response'->->'command_tuples'->->0->>->>'node_id' ASAS
node_id,
 j->->'response'->->'command_tuples'->->0->>->>'node_name' ASAS
node_name,
 j->->'response'->->'command_tuples'->->0->>->>'pub_repsets' ASAS
pub_repsets,
 j->->'response'->->'command_tuples'->->0->>->>'sub_repsets' ASAS
sub_repsets
FROMFROM node_repsets;

 node_id | node_name | pub_repsets |
sub_repsets
------------+-----------+--
 933864801 | s02db01 | {bdrglobal,bdrs02} |
{bdrglobal,bdrs02}
 1834550102 | s01db01 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
 3898940082 | s01db02 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
 1102086297 | s02db02 | {bdrglobal,bdrs02} |
{bdrglobal,bdrs02}
(4 rowsrows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 215

same name as the PGD group. This filter is added to the default PGD group replication set when the PGD group is created.

You can adjust this by changing the DDL replication filters for all existing replication sets. These filters are independent of table membership in the replication sets.
Just like data changes, each DDL statement is replicated only once, even if it's matched by multiple filters on multiple replication sets.

You can list existing DDL filters with the following query, which shows for each filter the regular expression applied to the command tag and to the role name:

You can use bdr.replication_set_add_ddl_filter and bdr.replication_set_remove_ddl_filter to manipulate DDL filters. They're
considered to be DDL and are therefore subject to DDL replication and global locking.

Selective Replication Example

In this example, we configure EDB Postgres Distributed to selectively replicate tables to particular groups of nodes.

Cluster Configuration

This example assumes we have a cluster of six data nodes, data-a1 to data-a3 and data-b1 to data-b3 in two locations, represented by them being
members of the region_a and region_b groups.

There's also, as we recommend, a witness node, named witness in region-c , but we won't be needing to mention that in this example. The cluster itself will
be called sere .

This configuration looks like this:

This is the standard Always-On multiregion configuration as discussed in the Choosing your architecture section.

Application Requirements

SELECTSELECT ** FROMFROM bdr.ddl_replication;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 216

https://www.enterprisedb.com/docs/pgd/5/architectures

For this example, we are going to work with an application which record the opinions of people who attended performances of musical works. There is a table for
attendees, a table for the works and an opinion table which records which attendee saw which work, where, when and how they scored the work. Because of data
regulation, the example assumes that opinion data must stay only in the region where the opinion was recorded.

Creating tables

The first step is to create appropriate tables.

Viewing groups and replication sets

By default, EDB Postgres Distributed is configured to replicate each table in its entireity to each and every node. This is managed through Replication Sets.

To view the initial configuration's default replication sets run:

 node_group_name | default_repset | parent_group_name
-----------------+----------------+-------------------
 sere | sere |
 region_a | region_a | sere
 region_b | region_b | sere
 region_c | region_c | sere

In the output, you can see there is the top level group, sere with a default replication set named sere . Each of the three subgroups has a replication set with
the same name as the subgroup; the region_a group has a region_a default replication set.

By default, all existing tables and new tables become members of the replication set of the top-level group.

Adding tables to replication sets

The next step in this process is to add tables to the replication sets belonging to the groups that represent our regions. As previously mentioned, all new tables are

CREATECREATE TABLETABLE attendee
(
 idid bigserial PRIMARYPRIMARY KEYKEY,
 email text NOTNOT NULLNULL
);

CREATECREATE TABLETABLE workwork
(
 idid int PRIMARYPRIMARY KEYKEY,
 title text NOTNOT NULLNULL,
 author text NOTNOT
NULLNULL
);

CREATECREATE TABLETABLE opinion
(
 idid bigserial PRIMARYPRIMARY KEYKEY,
 work_id int NOTNOT NULLNULL REFERENCESREFERENCES workwork(idid),
 attendee_id bigint NOTNOT NULLNULL REFERENCESREFERENCES
attendee(idid),
 country text NOTNOT NULLNULL,
 day date NOTNOT NULLNULL,
 score int NOTNOT NULLNULL
);

SELECTSELECT node_group_name, default_repset,
parent_group_name
FROMFROM bdr.node_group_summary;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 217

automatically added to the sere replication set. We can confirm that by running:

 relname | set_name
----------+----------
 attendee | sere
 opinion | sere
 work | sere
(3 rows)

We want the opinion table to be replicated only within region_a , and separately only within region_b . To do that, we add the table to the replica sets of
each region.

But, we are not done, because opinion is still a member of the sere replication set. When a table is a member of multiple replication sets, it is replicated
within each. This doesn't impact performance though as each row in only replicated once on each target node. We don't want opinion replicated across all
nodes, so we need to remove it from the top-level group's replication set:

We can now review these changes:

 relname | set_name
----------+-------------------
 attendee | sere
 opinion | region_a
 opinion | region_b
 work | sere
(4 rows)

This should provide the selective replication we desired. The next step is to test it.

Testing Selective Replication

Let's create some test data, two works and an attendee. We'll connect directly to data-a1 to run this next code:

Now that there is some data in these tables, we can insert into the opinion table without violating foreign key constraints.

SELECTSELECT relname, set_name FROMFROM bdr.tablestables ORDERORDER BYBY relname,
set_name;

SELECTSELECT bdr.replication_set_add_table('opinion', 'region_a');
SELECTSELECT bdr.replication_set_add_table('opinion', 'region_b');

SELECTSELECT bdr.replication_set_remove_table('opinion', 'sere');

SELECTSELECT relname, set_name FROMFROM bdr.tablestables ORDERORDER BYBY relname,
set_name;

INSERTINSERT INTOINTO workwork VALUESVALUES (1, 'Aida',
'Verdi');
INSERTINSERT INTOINTO workwork VALUESVALUES (2, 'Lohengrin',
'Wagner');
INSERTINSERT INTOINTO attendee (email) VALUESVALUES
('gv@example.com');

INSERTINSERT INTOINTO opinion (work_id, attendee_id, country, day,
score)
SELECTSELECT workwork.idid, attendee.idid, 'Italy', '1871-11-19', 3
 FROMFROM workwork,
attendee
 WHEREWHERE workwork.title == 'Lohengrin'
 ANDAND attendee.email ==
'gv@example.com';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 218

Once inserted, we can validate the contents of the database on the same node:

 email | country | day | title | author | score
----------------+---------+------------+-----------+--------+-------
 gv@example.com | Italy | 1871-11-19 | Lohengrin | Wagner | 3
(1 row)

If we now connect to nodes data-a2 and data-a3 and run the same query, we will get the same result. The data is being replicated in region_a . If we
connect to data-b1 , data-b2 or data-b3 , the query will return no rows. That's because, although the attendee and work tables are populated, there's
no opinion row that could be selected. That, in turn, is because the replication of opinion on region_a only happens in that region.

If we now connect to data-b1 and insert an opinion on there like so:

This opinion will only be replicated on region_b . On data-b1 , data-b2 and data-b3 , you can run:

 email | country | day | title | author | score
----------------+---------+------------+-----------+--------+-------
 fb@example.com | Germany | 1850-08-27 | Lohengrin | Wagner | 9
(1 row)

You will see the same result on each of the region_b data nodes. Run the query on region_a nodes and you will not see this particular entry.

Finally, we should note that the attendee table is shared identically across all nodes; on any node, running the query:

SELECTSELECT a.email
, o.country
, o.day
, w.title
,
w.author
, o.score
FROMFROM opinion
o
JOINJOIN workwork w ONON w.idid ==
o.work_id
JOINJOIN attendee a ONON a.idid ==
o.attendee_id;

INSERTINSERT INTOINTO attendee (email) VALUESVALUES
('fb@example.com');

INSERTINSERT INTOINTO opinion (work_id, attendee_id, country, day,
score)
SELECTSELECT workwork.idid, attendee.idid, 'Germany', '1850-08-27', 9
 FROMFROM workwork,
attendee
 WHEREWHERE workwork.title == 'Lohengrin'
 ANDAND attendee.email ==
'fb@example.com';

SELECTSELECT a.email
, o.country
, o.day
, w.title
,
w.author
, o.score
FROMFROM opinion
o
JOINJOIN workwork w ONON w.idid ==
o.work_id
JOINJOIN attendee a ONON a.idid ==
o.attendee_id;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 219

 id | email
--------------------+----------------
 904252679641903104 | gv@example.com
 904261037006536704 | fb@example.com
(2 rows)

19 Application connection management

Managing application connections is an important part of high availability.

Especially with asynchronous replication, having a consistent write lead node is important to avoid conflicts and guarantee availability for the application.

EDB Postgres Distributed provides a proxy layer called PGD Proxy, which is normally installed in highly available configuration (at least two instances per region).

The PGD Proxy connects to one of the EDB Postgres Distributed nodes and monitors routing configuration changes as decided by the EDB Postgres Distributed
cluster. It ensures that the connections are routed to the correct nodes consistently.

Configuration

Configuring the routing is done through either SQL interfaces or through PGD-CLI.

You can enable routing decisions by calling the bdr.alter_node_group_option() function. For example:

SELECT bdr.alter_node_group_option('region1-group', 'enable_proxy_routing', 'true')

You can disable it by setting the same option to false .

Additional group-level options affect the routing decisions:

route_writer_max_lag — Maximum lag in bytes of the new write candidate to be selected as write leader. If no candidate passes this, no writer is
selected automatically.
route_reader_max_lag — Maximum lag in bytes for a node to be considered a viable read-only node. Currently reserved for future use.

Per-node configuration of routing is set using bdr.alter_node_option() . The available options that affect routing are the following:

route_dsn — The dsn used by proxy to connect to this node.
route_priority — Relative routing priority of the node against other nodes in the same node group.
route_fence — Whether the node is fenced from routing, that is, it can't receive connections from PGD Proxy.
route_writes — Whether writes can be routed to this node, that is, whether the node can become write leader.
route_reads — Whether read-only connections can be routed to this node. Currently reserved for future use.

You can also configure the proxies using SQL interfaces. You can add proxy configuration using bdr.create_proxy . For example, SELECT
bdr.create_proxy('region1-proxy1', 'region1-group'); adds the default configuration for a proxy named region1-proxy1 that's a member
of PGD group region1-group . The name of the proxy given here must be same as the name given in the proxy configuration file. You can remove a proxy
configuration using SELECT bdr.drop_proxy('region1-proxy1') . The proxy is deactivated as a result.

You can configure options for each proxy using the bdr.alter_proxy_option() function. The available options are:

listen_address — Address for the proxy to listen on.
listen_port — Port for the proxy to listen on.
max_client_conn — Maximum number of connections for the proxy to accept.
max_server_conn — Maximum number of connections the proxy can make to the Postgres node.

SELECTSELECT ** FROMFROM attendee;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 220

server_conn_timeout — Connection timeout for server connections.
server_conn_keepalive — Keepalive interval for server connections.
consensus_grace_period — Duration for which proxy continues to route even upon loss of a Raft leader. If set to 0s , proxy stops routing

immediately.

The current configuration of every group is visible in the bdr.node_group_routing_config_summary view. Similarly, the
bdr.node_routing_config_summary view shows current per-node routing configuration. bdr.proxy_config_summary shows per-proxy

configuration.

You can also do a switchover operation to explicitly change the node that's the write leader. To do so, use the bdr.routing_leadership_transfer()
function.

19.1 EDB Postgres Distributed Proxy

EDB Postgres Distributed Proxy is a daemon that acts as an abstraction layer between the client application and Postgres. It interfaces with the PGD consensus
mechanism to get the identity of the current write leader node and redirects traffic to that node.

The PGD cluster always has at least one global group and one data group. PGD elects the write leader for each data group that has the
enable_proxy_routing and enable_raft options set to true. You can attach Proxy to a global group or data group. You can attach multiple proxies to

each group.

PGD Proxy is a TCP layer 4 proxy.

How it works

Upon starting, PGD Proxy connects to one of the endpoints given in the local config file. It fetches:

DB connection information for all nodes
Proxy options like listen address, listen port
Routing details like current write leader

Endpoints given in the config file are used only at startup. After that, actual endpoints are taken from the PGD catalog's route_dsn field in
bdr.node_routing_config_summary .

PGD manages write leader election. PGD Proxy interacts with PGD to get write leader change events notifications on Postgres notify/listen channels and routes
client traffic to the current write leader. PGD Proxy disconnects all existing client connections on write leader change or when write leader is unavailable. Write
leader election is a Raft-backed activity and is subject to Raft leader availability. PGD Proxy closes the new client connections if write leader is unavailable.

PGD Proxy responds to write leader change events that can be categorized into two modes of operation: failover and switchover.

Automatic transfer of write leadership from the current write leader node to a new node in the event of Postgres or operating system crash is called failover. PGD
elects a new write leader when the current write leader goes down or becomes unresponsive. Once the new write leader is elected by PGD, PGD Proxy closes
existing client connections to the old write leader and redirects new client connections to the newly elected write leader.

User-controlled, manual transfer of write leadership from the current write leader to a new target leader is called switchover. Switchover is triggered through the
PGD CLI switchover command. The command is submitted to PGD, which attempts to elect the given target node as the new write leader. Similar to failover, PGD
Proxy closes existing client connections and redirects new client connections to the newly elected write leader. This is useful during server maintenance, for
example, if the current write leader node needs to be stopped for maintenance like a server update or OS patch update.

Consensus grace period

PGD Proxy provides the consensus_grace_period proxy option that can be used to configure the routing behavior upon loss of a Raft leader. PGD Proxy
continues to route to the current write leader (if it's available) for this duration. If the new Raft leader isn't elected during this period, the proxy stops routing. If set
to 0s , PGD Proxy stops routing immediately.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 221

The main purpose of this option is to allow users to configure the write behavior when the Raft leader is lost. When the Raft leader isn't present in the cluster, it's
not always guaranteed that the current write leader seen by the proxy is the correct one. In some cases, like network partition in the following example, it is possible
that the two write leaders may be seen by two different proxies attached to the same group increasing the chances of write conflicts. If this isn't the desired
behavior, then the previously mentioned consensus_grace_period can be set to 0s. This setting configures the proxy to stop routing and closes existing open
connections immediately when it detects the Raft leader is lost.

Network partition example

Consider a 3-data node group with a proxy on each data node. In this case, if the current write leader gets network partitioned or isolated, then the data nodes
present in the majority partition elects a new write leader. If consensus_grace_period is set to a non-zero value, say 10s , then the proxy present on the
previous write leader continues to route writes for this duration.

In this case, if the grace period is kept too high, then writes continue to happen on the two write leaders. This condition increases the chances of write conflicts.

Having said that, most of the time, upon loss of the current Raft leader, the new Raft leader gets elected by BDR within a few seconds if more than half of the nodes
(quorum) are still up. Hence, if the Raft leader is down but the write leader is still up, then proxy can be configured to allow routing by keeping
consensus_grace_period to a non-zero, positive value. The proxy waits for the Raft leader to get elected during this period before stopping routing. This

might be helpful in some cases where availability is more important.

Multi-host connection strings

The PostgreSQL C client library (libpq) allows you to specify multiple host names in a single connection string for simple failover. This is also supported by client
libraries (drivers) in some other programming languages. It works well for failing over across PGD Proxy instances that are down or inaccessible.

However, if the PGD Proxy instance is accessible but doesn't have access to the write leader, or the write leader for a given instance doesn't exist (that is, because
there's no write leader for the given PGD group), the connection simply fails. No other hosts in the multi-host connection string is tried. This behavior is consistent
with the behavior of PostgreSQL client libraries with other proxies like HAProxy or pgbouncer.

Managing PGD Proxy

PGD CLI provides a few commands to manage proxies in a PGD cluster, such as create-proxy , delete-proxy , set-proxy-options , and show-
proxies . See PGD CLI for more information.

See Connection management for more information on the PGD side of configuration and management of PGD Proxy.

Proxy health check

PGD Proxy provides the following HTTP(s) health check API endpoints. The API endpoints respond to GET requests. You need to enable and configure them before
using them. See Configurations.

GET /health/is-ready
GET /health/is-live

Readiness

On receiving a valid GET request, the proxy checks if it can successfully route connections to the current write leader. If the check returns successfully, the API
responds with a body containing true and an HTTP status code 200 (OK) . Otherwise, it returns a body containing false with the HTTP status code 500
(Internal Server Error) .

Liveness

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 222

Liveness checks return either true with HTTP status code 200 (OK) or an error. They never return false because the HTTP server listening for the request
is stopped if the PGD Proxy service fails to start or exits.

Proxy log location

syslog

Debian based - /var/log/syslog
Red Hat based - /var/log/messages

Use the journalctl command to filter and view logs for troubleshooting Proxy. The following are few sample commands for quick reference:

19.2 Installing PGD Proxy

Installing PGD Proxy

You can use two methods to install and configure PGD Proxy to manage an EDB Postgres Distributed cluster. The recommended way to install and configure PGD
Proxy is to use the EDB Trusted Postgres Architect (TPA) utility for cluster deployment and management.

Installing through TPA

If the PGD cluster is being deployed through TPA, then TPA installs and configures PGD Proxy automatically as per the recommended architecture. If you want to
install PGD Proxy on any other node in a PGD cluster, then you need to attach the pgd-proxy role to that instance in the TPA configuration file. Also set the
bdr_child_group parameter before deploying, as this example shows. See Trusted Postgres Architect for more information.

Configuration

PGD Proxy connects to the PGD database for its internal operations, like getting proxy options and getting write leader details. Therefore, it needs a list of
endpoints/dsn to connect to PGD nodes. PGD Proxy expects these configurations in a local config file pgd-proxy-config.yml . Following is a working
example of the pgd-proxy-config.yml file:

journalctl -u pgd-proxy -n100 -f
journalctl -u pgd-proxy --since today
journalctl -u pgd-proxy --since "10 min
ago"
journalctl -u pgd-proxy --since "2022-10-20 16:21:50" --until "2022-10-20 16:21:55"

-- Name:: proxy-
a1
 location::
a
 node:: 4
 role::
 -- pgd-proxy
 vars::
 bdr_child_group:: group_a
 volumes::
 -- device_name::
/dev/sdf
 volume_type:: none

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 223

https://www.enterprisedb.com/docs/pgd/5/admin-tpa/

By default, in the cluster created through TPA, pgd-proxy-config.yml is located in the /etc/edb/pgd-proxy directory. PGD Proxy searches for pgd-
proxy-config.yml in the following locations. Precedence order is high to low.

1. /etc/edb/pgd-proxy (default)
2. $HOME/.edb/pgd-proxy

If you rename the file or move it to another location, specify the new name and location using the optional -f or --config-file flag when starting a service.
See the sample service file.

You can set the log level for the PGD Proxy service using the top-level config parameter log-level , as shown in the sample config. The valid values for log-
level are debug , info , warn , and error .

cluster.endpoints and cluster.proxy.name are mandatory fields in the config file. PGD Proxy always tries to connect to the first endpoint in the list. If
it fails, it tries the next endpoint, and so on.

PGD Proxy uses endpoints given in the local config file only at proxy startup. After that, PGD Proxy retrieves the list of actual endpoints (route_dsn) from the PGD
Proxy catalog. Therefore, the node option route_dsn must be set for each PGD Proxy node. See route_dsn for more information.

Configuring health check

PGD Proxy provides HTTP(S) health check APIs. If the health checks are required, you can enable them by adding the following configuration parameters to the pgd-
proxy configuration file. By default, it's disabled.

You can enable the API by adding the config cluster.proxy.http.enable: true . When enabled, an HTTP server listens on the default port, 8080 , with a
10-second timeout and no HTTPS support.

log-level:: debug
cluster::
 name:: cluster-
name
 endpoints::
 -- "host=bdr-a1 port=5432 dbname=bdrdb user=pgdproxy
"
 -- "host=bdr-a3 port=5432 dbname=bdrdb user=pgdproxy
"
 -- "host=bdr-a2 port=5432 dbname=bdrdb user=pgdproxy
"
 proxy::
 name:: "proxy-a1"

cluster::
 name:: cluster-
name
 endpoints::
 -- "host=bdr-a1 port=5432 dbname=bdrdb user=pgdproxy
"
 -- "host=bdr-a3 port=5432 dbname=bdrdb user=pgdproxy
"
 -- "host=bdr-a2 port=5432 dbname=bdrdb user=pgdproxy
"
 proxy::
 name:: "proxy-a1"
 endpoint:: "host=proxy-a1 port=6432 dbname=bdrdb user=pgdproxy
"
 http::
 enable:: true
 host:: "0.0.0.0"
 port:: 8080
 secure:: false
 cert_file:: ""
 key_file:: ""
 probes::
 timeout::
10s

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 224

To enable HTTPS, set the config parameter cluster.proxy.http.secure: true . If it's set to true , the cert_file and key_file must also be set.

The cluster.proxy.endpoint is an endpoint used by the proxy to connect to the current write leader as part of its checks. When
cluster.proxy.http.enable is true , cluster.proxy.endpoint must also be set. It can be the same as BDR node routing_dsn, where host is
listen_address and port is listen_port proxy options. If required, you can add connection string parameters in this endpoint, like sslmode ,
sslrootcert , user , and so on.

PGD Proxy user

The database user specified in the endpoint doesn't need to be a superuser. Typically, in the TPA environment, pgdproxy is an OS user as well as a database user
with the bdr_superuser role.

PGD Proxy service

We recommend running PGD Proxy as a systemd service. The pgd-proxy service unit file is located at /etc/systemd/system/pgd-proxy.service by
default. Following is the sample service file created by TPA:

[Unit]
Description=PGD Proxy

[Service]
Type=simple
User=pgdproxy
Group=pgdproxy
Restart=on-failure
RestartSec=1s
ExecStart=/usr/bin/pgd-proxy -f /etc/edb/pgd-proxy/pgd-proxy-config.yml
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=pgd-proxy

[Install]
WantedBy=multi-user.target

Use these commands to manage the pgd-proxy service:

Installing manually

You can manually install PGD Proxy on any Linux machine using .deb and .rpm packages available from the PGD repository. The package name is edb-pgd5-
proxy . For example:

19.3 Proxies, Raft, and Raft subgroups

PGD manages its metadata using a Raft model where a top-level group spans all the data nodes in the PGD installation. A Raft leader is elected by the top-level

systemctl status pgd-
proxy
systemctl stop pgd-proxy
systemctl restart pgd-proxy

for
Debian
sudo apt-get install edb-pgd5-proxy

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 225

group and propagates the state of the top-level group to all the other nodes in the group.

What is Raft?What is Raft?

Raft is an industry-accepted algorithm for making decisions though achieving consensus from a group of separate nodes in a distributed system.

For certain operations in the top-level group, it's essential that a Raft leader must be both established and connected. Examples of these operations include adding
and removing nodes and allocating ranges for galloc sequences.

It also means that an absolute majority of nodes in the top-level group (one half of them plus one) must be able to reach each other. So, in a top-level group with five
nodes, at least three of the nodes must be reachable by each other to establish a Raft leader.

Proxy routing

One function that also uses Raft is proxy routing. Proxy routing requires that the proxies can coordinate writing to a data node within their group of nodes. This data
node is the write leader. If the write leader goes offline, the proxies need to be able to switch to a new write leader, selected by the data nodes, to maintain
continuity for connected applications.

You can configure proxy routing on a per-node group basis in PGD 5, but the recommended configurations are global and local routing.

Global routing

Global routing uses the top-level group to manage the proxy routing. All writable data nodes (not witness or subscribe-only nodes) in the group are eligible to
become write leader for all proxies. Connections to proxies within the top-level group will be routed to data nodes within the top-level group.

With global routing, there's only one write leader for the entire top-level group.

Local routing

Local routing uses subgroups, often mapped to locations, to manage the proxy routing within the subgroup. Local routing is often used for geographical separation
of writes. It's important for them to continue routing even when the top-level consensus is lost.

That's because PGD allows queries and asynchronous data manipulation (DMLs) to work even when the top-level consensus is lost. But using the top-level
consensus, as is the case with global routing, means that new write leaders can't be elected when that consensus is lost. Local groups can't rely on the top-level
consensus without adding an independent consensus mechanism and its added complexity.

PGD 5 introduced subgroup Raft support to elegantly address this issue. Subgroup Raft support allows the subgroups in a PGD top-level group to elect the leaders
they need independently. They do this by forming devolved Raft groups that can elect write leaders independent of other subgroups or the top-level Raft consensus.
Connections to proxies in the subgroup then route to data nodes within the subgroup.

With local routing, there's a write leader for each subgroup.

More information

Raft subgroups and TPA shows how Raft subgroups can be enabled in PGD when deploying with Trusted Postgres Architect.
Raft subgroups and PGD CLI shows how the PGD CLI reports on the presence and status of Raft subgroups.
Migrating to Raft subgroups is a guide to migrating existing installations and enabling Raft subgroups without TPA.
Raft elections in depth looks in detail at how the write leader is elected using Raft.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 226

19.3.1 Creating Raft subgroups using TPA

The TPAexec configure command enables Raft subgroups if the --enable_proxy_routing local option is set. TPA uses the term locations to reflect
the common use case of subgroups that map to physical/regional domains. When the configuration is generated, the location name given is stored under the
generated group name, which is based on the location name.

Creating Raft subgroups using TPA

This example creates a two-location cluster with three data nodes in each location. The nodes in each location are part of a PGD Raft subgroup for the location.

The top-level group's name is pgdgroup .

The top-level group has two locations: us_east and us_west . These locations are mapped to two subgroups: us_east_subgroup and
us_west_subgroup .

Each location has four nodes: three data nodes and a barman backup node. The three data nodes also cohost PGD Proxy. The configuration can be visualized like so:

The barman nodes don't participate in the subgroup and, by extension, the Raft group. They're therefore not shown. This diagram is a snapshot of a potential state of
the cluster with the West Raft group having selected west_1 as write leader and west_2 as its own Raft leader. On the East, east_1 is write leader while east_3 is
Raft leader. The entire cluster is contained within the top-level Raft group. There, west_3 is currently Raft leader.

To create this configuration, you run:

tpaexec configure pgdgroup --architecture PGD-Always-ON --location-names us_east us_west --data-nodes-per-
location 3 --epas 16 --no-redwood --enable_proxy_routing local --hostnames-from hostnames.txt

Where hostnames.txt contains:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 227

east1
east2
east3
eastbarman
west1
west2
west3
westbarman

The configuration file

The generated config.yml file has a bdr_node_groups section that contains the top-level group pgdgroup and the two subgroups
us_east_subgroup and us_west_subgroup . Each of those subgroups has a location set (us_east and us_west) and two other options that are set to

true:

enable_raft , which activates the subgroup Raft in the subgroup
enable_proxy_routing , which enables the pgd_proxy routers to route traffic to the subgroup’s write leader

Here's an example generated by the sample tpaexec command:

cluster_vars:
 apt_repository_list: []
 bdr_database: bdrdb
 bdr_node_group: pgdgroup
 bdr_node_groups:
 - name: pgdgroup
 - name: us_east_subgroup
 options:
 enable_proxy_routing: true
 enable_raft: true
 location: us_east
 parent_group_name: pgdgroup
 - name: us_west_subgroup
 options:
 enable_proxy_routing: true
 enable_raft: true
 location: us_west
 parent_group_name: pgdgroup
 bdr_version: '5'

Every node instance has an entry in the instances list. In that entry, bdr_child_group appears in the variables section, set to the subgroup the node belongs to.
Here's an example generated by the sample tpaexec command:

instances:
- Name: east1
 backup: eastbarman
 location: us_east
 node: 1
 role:
 - bdr
 - pgd-proxy
 vars:
 bdr_child_group: us_east_subgroup
 bdr_node_options:
 route_priority: 100
- Name: east2
 location: us_east
 node: 2
 role:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 228

 - bdr
 - pgd-proxy
 vars:
 bdr_child_group: us_east_subgroup
 bdr_node_options:
 route_priority: 100
- Name: east3
 location: us_east
 node: 3
 role:
 - bdr
 - pgd-proxy
 vars:
 bdr_child_group: us_east_subgroup
 bdr_node_options:
 route_priority: 100
- Name: eastbarman
 location: us_east
 node: 4
 role:
 - barman

The one node in this location that doesn't have a bdr_child_group setting is the barman node because it doesn't participate in the Raft decision-making
process.

19.3.2 Working with Raft subgroups and PGD CLI

You can view the status of your nodes and subgroups with the pgd CLI command. The examples here assume a cluster as configured in Creating Raft subgroups with
TPA.

Viewing nodes with pgd

The pgd command is show-nodes .

$pgd show-nodes

Node Node ID Node Group Type Current State Target State Status Seq ID
---- ------- ---------- ---- ------------- ------------ ------ ------
east1 916860695 us_east data ACTIVE ACTIVE Up 1
east2 2241077170 us_east data ACTIVE ACTIVE Up 2
east3 1093023575 us_east data ACTIVE ACTIVE Up 3
west1 1668243030 us_west data ACTIVE ACTIVE Up 4
west2 2311995928 us_west data ACTIVE ACTIVE Up 5
west3 4162758468 us_west data ACTIVE ACTIVE Up 6

Viewing groups (and subgroups) with pgd

To show the groups in a PGD deployment, along with their names and attributes, use the PGD CLI command show-groups.

$pgd show-groups
Group Group ID Type Parent Group Location Raft Routing Write Leader
----- -------- ---- ------------ -------- ---- ------- ------------

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 229

pgdgroup 1360502012 global true false
us_east 1806884964 data pgdgroup us_east true true east2
us_west 3098768667 data pgdgroup us_west true true west1

19.3.3 Migrating to Raft subgroups

You can introduce Raft subgroups in a running PGD installation.

Migrating to Raft subgroups (using SQL only)

To enable Raft subgroups to an existing cluster, these configuration steps are needed:

Identify the top-level group for all nodes in the PGD cluster. An existing cluster already has a top-level group that all nodes belong to.
Create a subgroup for each location. Use bdr.create_node_group with a parent_group_name argument that gives the top-level group as its
value.
Add each node at each location to their location’s subgroup using bdr.switch_node_group() .
Alter each of the location’s subgroups to enable Raft for the group. Use bdr.alter_node_group_option() , setting the enable_raft option to
true .

Enabling subgroup Raft node group (using SQL only)

19.3.4 Raft elections in depth

The selection of a write leader in PGD relies on PGD's Raft mechanism. The Raft mechanism is completely internal to PGD's BDR Postgres extension and operates
transparently. The nodes within a group begin by establishing a Raft leader within the nodes of the group.

Node interaction

With the Raft leader established, the leader then queries the catalog to see if a write leader for proxy routing was designated.

If no write leader is designated, the Raft leader takes steps to designate a new write leader. The process starts by querying all the nodes in the group to establish
their state. The resulting list of nodes is then filtered for ineligible nodes (for example, witness nodes) and prioritized. The first/top entry on the list is then set as the
new write leader in the Raft log.

Proxy interaction

All proxies initially connect any data node in their group. This behavior allows them to query the catalog for the current write leader and begin routing connections
to that node.

They connect to the Raft leader and listen for changes to the catalog entry for write leader. When notified of a change in write leader, they reconfigure routing and
send connections to the new write leader.

Both the node and proxy interaction are shown on the following sequence diagram. Two nodes and one proxy are involved, coordinating which node will be write

SELECTSELECT bdr.alter_node_group_option('$group_name', 'enable_raft', 'true');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 230

leader and the proxy waiting to learn which node is write leader.

20 Backup and recovery

PGD is designed to be a distributed, highly available system. If one or more nodes of a cluster are lost, the best way to replace them is to clone new nodes directly
from the remaining nodes.

The role of backup and recovery in PGD is to provide for disaster recovery (DR), such as in the following situations:

Loss of all nodes in the cluster
Significant, uncorrectable data corruption across multiple nodes as a result of data corruption, application error, or security breach

Backup

pg_dump

You can use pg_dump, sometimes referred to as logical backup, normally with PGD.

pg_dump dumps both local and global sequences as if they were local sequences. This behavior is intentional, to allow a PGD schema to be dumped and ported to
other PostgreSQL databases. This means that sequence-kind metadata is lost at the time of dump, so a restore effectively resets all sequence kinds to the value of

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 231

bdr.default_sequence_kind at time of restore.

To create a post-restore script to reset the precise sequence kind for each sequence, you might want to use an SQL script like this:

If pg_dump is run using bdr.crdt_raw_value = on , then you can reload the dump only with bdr.crdt_raw_value = on .

Technical Support recommends the use of physical backup techniques for backup and recovery of PGD.

Physical backup

You can take physical backups of a node in a EDB Postgres Distributed cluster using standard PostgreSQL software, such as Barman.

You can perform a physical backup of a PGD node using the same procedure that applies to any PostgreSQL node. A PGD node is just a PostgreSQL node running the
BDR extension.

Consider these specific points to consider when applying PostgreSQL backup techniques to PGD:

PGD operates at the level of a single database, while a physical backup includes all the databases in the instance. Plan your databases to allow them to be
easily backed up and restored.

Backups make a copy of just one node. In the simplest case, every node has a copy of all data, so you need to back up only one node to capture all data.
However, the goal of PGD isn't met if the site containing that single copy goes down, so the minimum is at least one node backup per site (with many copies,
and so on).

However, each node might have unreplicated local data, or the definition of replication sets might be complex so that all nodes don't subscribe to all
replication sets. In these cases, backup planning must also include plans for how to back up any unreplicated local data and a backup of at least one node
that subscribes to each replication set.

Eventual consistency

The nodes in a EDB Postgres Distributed cluster are eventually consistent, but not entirely consistent. A physical backup of a given node provides point-in-time
recovery capabilities limited to the states actually assumed by that node.

The following example shows how two nodes in the same EDB Postgres Distributed cluster might not (and usually don't) go through the same sequence of states.

Consider a cluster with two nodes N1 and N2 that's initially in state S . If transaction W1 is applied to node N1 , and at the same time a non-conflicting
transaction W2 is applied to node N2 , then node N1 goes through the following states:

(N1) S --> S + W1 --> S + W1 + W2

Node N2 goes through the following states:

(N2) S --> S + W2 --> S + W1 + W2

That is, node N1 never assumes state S + W2 , and node N2 likewise never assumes state S + W1 . However, both nodes end up in the same state S + W1 +
W2 . Considering this situation might affect how you decide on your backup strategy.

Point-in-time recovery (PITR)

SELECTSELECT 'SELECT bdr.alter_sequence_set_kind('''||||
 nspname||||'.'||||relname||||''','''||||seqkind||||''');'
FROMFROM bdr.sequences
WHEREWHERE seqkind !=!= 'local';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 232

https://www.enterprisedb.com/docs/supported-open-source/barman/

The previous example showed that the changes are also inconsistent in time. W1 and W2 both occur at time T1 , but the change W1 isn't applied to N2 until
T2 .

PostgreSQL PITR is designed around the assumption of changes arriving from a single master in COMMIT order. Thus, PITR is possible by scanning through changes
until one particular point in time (PIT) is reached. With this scheme, you can restore one node to a single point in time from its viewpoint, for example, T1 .
However, that state doesn't include other data from other nodes that committed near that time but had not yet arrived on the node. As a result, the recovery might
be considered to be partially inconsistent, or at least consistent for only one replication origin.

To request this, use the standard syntax:

recovery_target_time = T1

PGD allows for changes from multiple masters, all recorded in the WAL log for one node, separately identified using replication origin identifiers.

PGD allows PITR of all or some replication origins to a specific point in time, providing a fully consistent viewpoint across all subsets of nodes.

Thus for multi-origins, you can view the WAL stream as containing multiple streams all mixed up into one larger stream. There's still just one PIT, but that's reached
as different points for each origin separately.

The WAL stream is read until requested origins have found their PIT. All changes are applied up until that point, except that any transaction records are not marked
as commmited for an origin after the PIT on that origin is reached.

You end up with one LSN "stopping point" in WAL, but you also have one single timestamp applied consistently, just as you do with single-origin PITR.

Once you reach the defined PIT, a later one might also be set to allow the recovery to continue, as needed.

After the desired stopping point is reached, if the recovered server will be promoted, shut it down first. Move the LSN forward to an LSN value higher than used on
any timeline on this server using pg_resetwal . This approach ensures that there are no duplicate LSNs produced by logical decoding.

In the specific example shown, N1 is restored to T1 . It also includes changes from other nodes that were committed by T1 , even though they weren't applied on
N1 until later.

To request multi-origin PITR, use the standard syntax in the postgresql.conf file:

recovery_target_time = T1

You need to specify the list of replication origins that are restored to T1 in one of two ways. You can use a separate multi_recovery.conf file by way of a
new parameter recovery_target_origins :

recovery_target_origins = '*'

Or you can specify the origin subset as a list in recovery_target_origins :

recovery_target_origins = '1,3'

The local WAL activity recovery to the specified recovery_target_time is always performed implicitly. For origins that aren't specified in
recovery_target_origins , recovery can stop at any point, depending on when the target for the list mentioned in recovery_target_origins is

achieved.

In the absence of the multi_recovery.conf file, the recovery defaults to the original PostgreSQL PITR behavior that's designed around the assumption of
changes arriving from a single master in COMMIT order.

NoteNote

This feature is available only with EDB Postgres Extended. Barman doesn't create a multi_recovery.conf file.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 233

Restore

While you can take a physical backup with the same procedure as a standard PostgreSQL node, it's slightly more complex to restore the physical backup of a PGD
node.

EDB Postgres Distributed cluster failure or seeding a new cluster from a backup

The most common use case for restoring a physical backup involves the failure or replacement of all the PGD nodes in a cluster, for instance in the event of a data
center failure.

You might also want to perform this procedure to clone the current contents of a EDB Postgres Distributed cluster to seed a QA or development instance.

In that case, you can restore PGD capabilities based on a physical backup of a single PGD node, optionally plus WAL archives:

If you still have some PGD nodes live and running, fence off the host you restored the PGD node to, so it can't connect to any surviving PGD nodes. This
practice ensures that the new node doesn't confuse the existing cluster.
Restore a single PostgreSQL node from a physical backup of one of the PGD nodes.
If you have WAL archives associated with the backup, create a suitable postgresql.conf and start PostgreSQL in recovery to replay up to the latest
state. You can specify an alternative recovery_target here if needed.
Start the restored node, or promote it to read/write if it was in standby recovery. Keep it fenced from any surviving nodes!
Clean up any leftover PGD metadata that was included in the physical backup.
Fully stop and restart the PostgreSQL instance.
Add further PGD nodes with the standard procedure based on the bdr.join_node_group() function call.

Cleanup of PGD metadata

To clean up leftover PGD metadata:

1. Drop the PGD node using bdr.drop_node .
2. Fully stop and restart PostgreSQL (important!).

Cleanup of replication origins

You must explicitly remove replication origins with a separate step because they're recorded persistently in a system catalog. They're therefore included in the
backup and in the restored instance. They aren't removed automatically when dropping the BDR extension, because they aren't explicitly recorded as its
dependencies.

To track progress of incoming replication in a crash-safe way, PGD creates one replication origin for each remote master node. Therefore, for each node in the
previous cluster run this once:

SELECT pg_replication_origin_drop('bdr_dbname_grpname_nodename');

You can list replication origins as follows:

SELECT * FROM pg_replication_origin;

Those created by PGD are easily recognized by their name.

Cleanup of replication slots

If a physical backup was created with pg_basebackup , replication slots are omitted from the backup.

Some other backup methods might preserve replications slots, likely in outdated or invalid states. Once you restore the backup, use this to drop all replication slots:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 234

SELECT pg_drop_replication_slot(slot_name)
FROM pg_replication_slots;

If you have a reason to preserve some slots, you can add a WHERE slot_name LIKE 'bdr%' clause, but this is rarely useful.

WarningWarning

Never run this on a live PGD node.

21 Monitoring

Monitoring replication setups is important to ensure that your system:

Performs optimally
Doesn't run out of disk space
Doesn't encounter other faults that might halt operations

It's important to have automated monitoring in place to ensure that the administrator is alerted and can take proactive action when issues occur. For example, the
administrator can be alerted if replication slots start falling badly behind,

EDB provides Postgres Enterprise Manager (PEM), which supports PGD starting with version 8.1. See Monitoring EDB Postgres Distributed for more information.

Alternatively, tools or users can make their own calls into information views and functions provided by the BDR extension. See Monitoring through SQL for details.

EDB Postgres Distributed also integrates with OpenTelemetry, allowing you to use an existing reporting setup to follow the state of the EDB Postgres Distributed
cluster. See OpenTelemetry integration for details.

21.1 OpenTelemetry integration

You can configure EDB Postgres Distributed to report monitoring information as well as traces to the OpenTelemetry collector.

EDB Postgres Distributed OTEL collector fills several resource attributes. These are attached to all metrics and traces:

The service.name is configurable with the bdr.otel_service_name configuration setting.
The service.namespace is always set to edb_postgres_distributed .
The service.instance.id is always set to the system identifier of the Postgres instance.
The service.version is set to the current version of the BDR extension loaded in the Postgresql instance.

OTEL and OLTP compatibility

For OTEL connections the integration supports OLTP/HTTP version 1.0.0 only, over HTTP or HTTPS. It doesn't support OLTP/gRPC.

Metrics collection

Setting the configuration option bdr.metrics_otel_http_url to a non-empty URL enables the metric collection.

Different kinds of metrics are collected as shown in the tables that follow.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 235

https://www.enterprisedb.com/docs/pem/latest/monitoring_BDR_nodes/
https://opentelemetry.io/

Generic metrics

Metric name Type Labels Description

pg_backends_by_state gauge conn_state - idle, active, idle in transaction, fastpath functioncall, idle in
transaction (aborted), disabled, undefined

Number of backends in a given state

pg_oldest_xact_start gauge Oldest transaction start time

pg_oldest_activity_start gauge Oldest query start time

pg_waiting_backends gauge wait_type - LWLock, Lock, BufferPin, Activity, Client, Extension, IPC,
Timeout, IO, ??? (for unknown)

Number of currently waiting backends by
wait type

pg_start_time gauge Timestamp at which the server has
started

pg_reload_time gauge Timestamp at which the server has last
reloaded configuration

Replication metrics

Metric name Type Labels Description

bdr_slot_sent_lag gauge slot_name - name of a slot Current sent lag in bytes for each replication slot

bdr_slot_write_lag gauge slot_name - name of a slot Current write lag in bytes for each replication slot

bdr_slot_flush_lag gauge slot_name - name of a slot Current flush lag in bytes for each replication slot

bdr_slot_apply_lag gauge slot_name - name of a slot Current apply lag in bytes for each replication slot

bdr_subscription_receive_lsn gauge sub_name - name of subscription Current received LSN for each subscription

bdr_subscription_flush_lsn gauge sub_name - name of subscription Current flushed LSN for each subscription

bdr_subscription_apply_lsn gauge sub_name - name of subscription Current applied LSN for each subscription

bdr_subscription_receiver gauge sub_name - name of subscription Whether subscription receiver is currently running (1) or not (0)

Consensus metric

See also Monitoring Raft Consensus

Metric name Type Labels Description

bdr_raft_state gauge state_str - RAFT_FOLLOWER, RAFT_CANDIDATE,
RAFT_LEADER, RAFT_STOPPED

Raft state of the consensus on this node

bdr_raft_protocol_version gauge Consensus protocol version used by this node

bdr_raft_leader_node gauge Id of a node that this node considers to be current leader

bdr_raft_nodes gauge Total number of nodes that participate in consensus
(includes learner/non-voting nodes)

bdr_raft_voting_nodes gauge Number of actual voting nodes in consensus

bdr_raft_term gauge Current raft term this node is on

bdr_raft_commit_index gauge Raft commit index committed by this node

bdr_raft_apply_index gauge Raft commit index applied by this node

Tracing

Tracing collection to OpenTelemetry requires configuring bdr.trace_otel_http_url and enabling tracing using bdr.trace_enable .

The tracing is limited to only some subsystems at the moment, primarily to the cluster management functionality. The following spans can be seen in traces.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 236

Span name Description

create_node_group Group creation

alter_node_group_config Change of group config options

alter_node_config Change of node config option

join_node_group Node joining a group

join_send_remote_request Join source sending the join request on behalf of the joining node

add_camo_pair Add CAMO pair

alter_camo_pair Change CAMO pair

remove_camo_pair Delete CAMO pair

alter_commit_scope Change commit scope definition (either create new or update existing)

alter_proxy_config Change config for PGD-Proxy instance (either create new or update existing)

walmsg_global_lock_send Send global locking WAL message

walmsg_global_lock_recv Received global locking WAL message

ddl_epoch_apply Global locking epoch apply (ensure cluster is synchronized enough for new epoch to start)

walmsg_catchup Catchup during node removal WAL message

raft_send_appendentries Internal Raft book keeping message

raft_recv_appendentries Internal Raft book keeping message

raft_request Raft request execution

raft_query Raft query execution

msgb_send Consensus messaging layer message

msgb_recv_receive Consensus messaging layer message

msgb_recv_deliver Consensus messaging layer message delivery

preprocess_ddl DDL command preprocessing

TLS support

The metrics and tracing endpoints can be HTTP or HTTPS. You can configure paths to the CA bundle, client key, and client certificate using
bdr.otel_https_ca_path , bdr.otel_https_key_path , and bdr.otel_https_cert_path configuration options.

21.2 Monitoring through SQL

EDB Postgres Distributed provides several monitoring and statistics views that are specific to its distributed nature. The standard Postgres monitoring is also useful
for monitoring EDB Postgres Distributed.

Monitoring overview

A PGD group consists of multiple servers, often referred to as nodes. Monitor all of the nodes to ensure the health of the whole group.

The bdr_monitor role can execute the bdr.monitor functions to provide an assessment of PGD health using one of three levels:

OK — Often shown as green.
WARNING — Often shown as yellow.
CRITICAL — Often shown as red.
UNKNOWN — For unrecognized situations, often shown as red.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 237

PGD also provides dynamic catalog views that show the instantaneous state of various internal metrics. It also provides metadata catalogs that store the
configuration defaults and configuration changes the user requests. Some of those views and tables are accessible by bdr_monitor or bdr_read_all_stats, but some
contain user or internal information that has higher security requirements.

PGD allows you to monitor each of the nodes individually or to monitor the whole group by access to a single node. If you want to monitor each node individually,
connect to each node and issue monitoring requests. If you want to monitor the group from a single node, then use the views starting with bdr.group since
these requests make calls to other nodes to assemble a group-level information set.

If you were granted access to the bdr.run_on_all_nodes() function by bdr_superuser, then you can make your own calls to all nodes.

Monitoring node join and removal

By default, the node management functions wait for the join or part operation to complete. You can turn waiting off using the respective
wait_for_completion function argument. If waiting is turned off, then to see when a join or part operation finishes, check the node state indirectly using
bdr.node_summary and bdr.event_summary .

When called, the helper function bdr.wait_for_join_completion() causes a PostgreSQL session to pause until all outstanding node join operations area
complete.

This example shows the output of a SELECT query from bdr.node_summary . It indicates that two nodes are active and another one is joining.

SELECT node_name, interface_connstr, peer_state_name,
node_seq_id, node_local_dbname
FROM bdr.node_summary;
-[RECORD 1]-----+---
node_name | node1
interface_connstr | host=localhost dbname=postgres port=7432
peer_state_name | ACTIVE
node_seq_id | 1
node_local_dbname | postgres
-[RECORD 2]-----+---
node_name | node2
interface_connstr | host=localhost dbname=postgres port=7433
peer_state_name | ACTIVE
node_seq_id | 2
node_local_dbname | postgres
-[RECORD 3]-----+---
node_name | node3
interface_connstr | host=localhost dbname=postgres port=7434
peer_state_name | JOINING
node_seq_id | 3
node_local_dbname | postgres

Also, the table bdr.node_catchup_info gives information on the catch-up state, which can be relevant to joining nodes or parting nodes.

When a node is parted, some nodes in the cluster might not receive all the data from that parting node. So parting a node creates a temporary slot from a node that
already received that data and can forward it.

The catchup_state can be one of the following:

10 = setup
20 = start
30 = catchup
40 = done

Monitoring Replication Peers

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 238

You use two main views for monitoring of replication activity:

bdr.node_slots for monitoring outgoing replication
bdr.subscription_summary for monitoring incoming replication

You can also obtain most of the information provided by bdr.node_slots by querying the standard PostgreSQL replication monitoring views
pg_catalog.pg_stat_replication and pg_catalog.pg_replication_slots .

Each node has one PGD group slot that must never have a connection to it and is very rarely be marked as active. This is normal and doesn't imply something is
down or disconnected. See Replication slots in Node Management.

Monitoring outgoing replication

You can use another view for monitoring of outgoing replication activity:

bdr.node_replication_rates for monitoring outgoing replication

The bdr.node_replication_rates view gives an overall picture of the outgoing replication activity along with the catchup estimates for peer nodes,
specifically.

SELECT * FROM bdr.node_replication_rates;
-[RECORD 1]----+-----------
peer_node_id | 112898766
target_name | node1
sent_lsn | 0/28AF99C8
replay_lsn | 0/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 822
catchup_interval | 00:00:00
-[RECORD 2]----+-----------
peer_node_id | 312494765
target_name | node3
sent_lsn | 0/28AF99C8
replay_lsn | 0/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 853
catchup_interval | 00:00:00

The apply_rate refers to the rate in bytes per second. It's the rate at which the peer is consuming data from the local node. The replay_lag when a node
reconnects to the cluster is immediately set to zero. This information will be fixed in a future release. As a workaround, we recommend using the
catchup_interval column that refers to the time required for the peer node to catch up to the local node data. The other fields are also available from the
bdr.node_slots view.

Administrators can query bdr.node_slots for outgoing replication from the local node. It shows information about replication status of all other nodes in the
group that are known to the current node as well as any additional replication slots created by PGD on the current node.

SELECT node_group_name, target_dbname, target_name, slot_name, active_pid,
catalog_xmin, client_addr, sent_lsn, replay_lsn, replay_lag,
replay_lag_bytes, replay_lag_size
FROM bdr.node_slots;
-[RECORD 1]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres
target_name | node3
slot_name | bdr_postgres_bdrgroup_node3
active_pid | 15089

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 239

https://www.postgresql.org/docs/current/static/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/current/view-pg-replication-slots.html

catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 120
replay_lag_size | 120 bytes
-[RECORD 2]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres
target_name | node2
slot_name | bdr_postgres_bdrgroup_node2
active_pid | 15031
catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 84211
replay_lag_size | 82 kB

Because PGD is a mesh network, to get the full view of lag in the cluster, you must execute this query on all nodes participating.

replay_lag_bytes reports the difference in WAL positions between the local server's current WAL write position and replay_lsn , the last position
confirmed replayed by the peer node. replay_lag_size is a human-readable form of the same. It's important to understand that WAL usually contains a lot of
writes that aren't replicated but still count in replay_lag_bytes , including, for example:

VACUUM activity
Index changes
Writes associated with other databases on the same node
Writes for tables that are not part of a replication set

So the lag in bytes reported here isn't the amount of data that must be replicated on the wire to bring the peer node up to date, only the amount of server-side WAL
that must be processed.

Similarly, replay_lag isn't a measure of how long the peer node takes to catch up or how long it takes to replay from its current position to the write position at
the time bdr.node_slots was queried. It measures the delay between when the peer confirmed the most recent commit and the current wall-clock time. We
suggest that you monitor replay_lag_bytes and replay_lag_size or catchup_interval in bdr.node_replication_rates , as this column
is set to zero immediately after the node reconnects.

The lag in both bytes and time doesn't advance while logical replication is streaming a transaction. It changes only when a commit is replicated. So the lag tends to
"sawtooth," rising as a transaction is streamed and then falling again as the peer node commits it, flushes it, and sends confirmation. The reported LSN positions
"stair-step" instead of advancing smoothly, for similar reasons.

When replication is disconnected (active = 'f'), the active_pid column is NULL , as is client_addr and the other fields that make sense only with
an active connection. The state field is 'disconnected' . The _lsn fields are the same as the confirmed_flush_lsn , since that's the last position
that the client is known for certain to have replayed to and saved. The _lag fields show the elapsed time between the most recent confirmed flush on the client
and the current time. The _lag_size and _lag_bytes fields report the distance between confirmed_flush_lsn and the local server's current WAL
insert position.

NoteNote

It's normal for restart_lsn to be behind the other lsn columns. This doesn't indicate a problem with replication or a peer node lagging. The
restart_lsn is the position that PostgreSQL's internal logical decoding must be reading WAL at if interrupted. It generally reflects the position of the

oldest transaction that's not yet replicated and flushed. A very old restart_lsn can make replication slow to restart after disconnection and force
retention of more WAL than is desirable, but it's otherwise harmless. If you're concerned, look for very long-running transactions and forgotten prepared
transactions.

Monitoring incoming replication

You can monitor incoming replication (also called subscriptions) by querying the bdr.subscription_summary view. This query shows the list of known

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 240

subscriptions to other nodes in the EDB Postgres Distributed cluster and the state of the replication worker:

SELECT node_group_name, origin_name, sub_enabled, sub_slot_name,
subscription_status
FROM bdr.subscription_summary;
-[RECORD 1]-------+----------------------------
node_group_name | bdrgroup
origin_name | node2
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating
-[RECORD 2]-------+----------------------------
node_group_name | bdrgroup
origin_name | node3
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating

Monitoring WAL senders using LCR

If the decoding worker is enabled, you can monitor information about the current logical change record (LCR) file for each WAL sender using the function
bdr.wal_sender_stats() . For example:

postgres=# SELECT * FROM bdr.wal_sender_stats();
 pid | is_using_lcr | decoder_slot_name | lcr_file_name
---------+--------------+-------------------------------+--
 2059904 | f | |
 2059909 | t | bdr_postgres_bdrgroup_decoder | 0000000000000000000000140000000000000000
 2059916 | t | bdr_postgres_bdrgroup_decoder | 0000000000000000000000140000000000000000
(3 rows)

If is_using_lcr is FALSE , decoder_slot_name / lcr_file_name is NULL . This is the case if the decoding worker isn't enabled or the WAL sender is
serving a logical standby.

Also, you can monitor information about the decoding worker using the function bdr.get_decoding_worker_stat() . For example:

postgres=# SELECT * FROM bdr.get_decoding_worker_stat();
 pid | decoded_upto_lsn | waiting | waiting_for_lsn
---------+------------------+---------+-----------------
 1153091 | 0/1E5EEE8 | t | 0/1E5EF00
(1 row)

Monitoring PGD replication workers

All PGD workers show up in the system view bdr.stat_activity , which has the same columns and information content as pg_stat_activity. So this view offers
these insights into the state of a PGD system:

The wait_event column has enhanced information, if the reason for waiting is related to PGD.
The query column is blank in PGD workers, except when a writer process is executing DDL.

The bdr.workers view shows PGD worker-specific details that aren't available from bdr.stat_activity .

The view bdr.event_summary shows the last error (if any) reported by any worker that has a problem continuing the work. This information is persistent, so it's
important to note the time of the error and not just its existence. Most errors are transient, and PGD workers will retry the failed operation.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 241

https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW

Monitoring PGD writers

Another system view, bdr.writers , monitors writer activities. This view shows only the current status of writer workers. It includes:

sub_name to identify the subscription that the writer belongs to
pid of the writer process
streaming_allowed to know if the writer supports applying in-progress streaming transactions
is_streaming to know if the writer is currently applying a streaming transaction
commit_queue_position to check the position of the writer in the commit queue

PGD honors commit ordering by following the same commit order as happened on the origin. In case of parallel writers, multiple writers might apply different
transactions at the same time. The commit_queue_position shows the order in which they will commit. Value 0 means that the writer is the first one to
commit. Value -1 means that the commit position isn't yet known, which can happen for a streaming transaction or when the writer isn't currently applying any
transaction.

Monitoring global locks

The global lock, which is currently used only for DDL replication, is a heavyweight lock that exists across the whole PGD group.

There are currently two types of global locks:

DDL lock, used for serializing all DDL operations on permanent (not temporary) objects (that is, tables) in the database
DML relation lock, used for locking out writes to relations during DDL operations that change the relation definition

You can create either or both entry types for the same transaction, depending on the type of DDL operation and the value of the bdr.ddl_locking setting.

Global locks held on the local node are visible in the bdr.global_locks view. This view shows the type of the lock. For relation locks, it shows the relation
that's being locked, the PID holding the lock (if local), and whether the lock was globally granted. In case of global advisory locks, lock_type column shows
GLOBAL_LOCK_ADVISORY , and relation column shows the advisory keys on which the lock is acquired.

This example shows the output of bdr.global_locks while running an ALTER TABLE statement with bdr.ddl_locking = 'all' :

SELECT lock_type, relation, pid FROM bdr.global_locks;
-[RECORD 1]--------------
lock_type | GLOBAL_LOCK_DDL
relation | [NULL]
pid | 15534
-[RECORD 2]--------------
lock_type | GLOBAL_LOCK_DML
relation | someschema.sometable
pid | 15534

See Catalogs for details on all fields, including lock timing information.

Monitoring conflicts

Replication conflicts can arise when multiple nodes make changes that affect the same rows in ways that can interact with each other. Monitor the PGD system to
identify conflicts and, where possible, make application changes to eliminate the conflicts or make them less frequent.

By default, all conflicts are logged to bdr.conflict_history . Since this log contains full details of conflicting data, the rows are protected by row-level
security to ensure they're visible only by owners of replicated tables. Owners should expect conflicts and analyze them to see which, if any, might be considered as
problems to resolve.

For monitoring purposes, use bdr.conflict_history_summary , which doesn't contain user data. This example shows a query to count the number of

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 242

conflicts seen in the current day using an efficient query plan:

Apply statistics

PGD collects statistics about replication apply, both for each subscription and for each table.

Two monitoring views exist: bdr.stat_subscription for subscription statistics and bdr.stat_relation for relation statistics. These views both
provide:

Number of INSERTs/UPDATEs/DELETEs/TRUNCATEs replicated
Block accesses and cache hit ratio
Total I/O time for read/write
Number of in-progress transactions streamed to file
Number of in-progress transactions streamed to writers
Number of in-progress streamed transactions committed/aborted

For relations only, bdr.stat_relation also includes:

Total time spent processing replication for the relation
Total lock wait time to acquire lock (if any) for the relation (only)

For subscriptions only, bdr.stat_subscription includes:

Number of COMMITs/DDL replicated for the subscription
Number of times this subscription has connected upstream

Tracking of these statistics is controlled by the PGD GUCs bdr.track_subscription_apply and bdr.track_relation_apply , respectively.

The following shows the example output from these:

In this case, the subscription connected three times to the upstream, inserted 10 rows, and performed two DDL commands inside five transactions.

You can reset the stats counters for these views to zero using the functions bdr.reset_subscription_stats and bdr.reset_relation_stats .

SELECTSELECT count(**)
FROMFROM bdr.conflict_history_summary
WHEREWHERE local_time >> date_trunc('day',
current_timestamp)
 ANDAND local_time << date_trunc('day', current_timestamp ++ '1
day');

SELECTSELECT sub_name, nconnect, ninsert, ncommit, nupdate, ndelete, ntruncate,
nddl
FROMFROM bdr.stat_subscription;
--[RECORD 1]---------------------------------
-
sub_name |
bdr_regression_bdrgroup_node1_node2
nconnect |
3
ninsert |
10
ncommit |
5
nupdate |
0
ndelete |
0
ntruncate |
0
nddl |
2

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 243

Standard PostgreSQL statistics views

Statistics on table and index usage are normally updated by the downstream master. This is essential for the correct function of autovacuum. If there are no local
writes on the downstream master and statistics haven't been reset, these two views show corresponding results between upstream and downstream:

pg_stat_user_tables
pg_statio_user_tables

NoteNote

We don't necessarily expect the upstream table statistics to be similar to the downstream ones. We only expect them to change by the same amounts.
Consider the example of a table whose statistics show 1M inserts and 1M updates. When a new node joins the PGD group, the statistics for the same table
in the new node show 1M inserts and zero updates. However, from that moment, the upstream and downstream table statistics change by the same
amounts because all changes on one side are replicated to the other side.

Since indexes are used to apply changes, the identifying indexes on the downstream side might appear more heavily used with workloads that perform UPDATE
and DELETE than non-identifying indexes are.

The built-in index monitoring views are:

pg_stat_user_indexes
pg_statio_user_indexes

All these views are discussed in detail in the PostgreSQL documentation on the statistics views.

Monitoring PGD versions

PGD allows running different Postgres versions as well as different BDR extension versions across the nodes in the same cluster. This capability is useful for
upgrading.

The view bdr.group_versions_details uses the function bdr.run_on_all_nodes() to retrieve Postgres and BDR extension versions from all nodes
at the same time. For example:

The recommended setup is to try to have all nodes running the same (and latest) versions as soon as possible. We recommend that the cluster doesn't run different
versions of the BDR extension for too long.

For monitoring purposes, we recommend the following alert levels:

status=UNKNOWN, message=This node is not part of any PGD group
status=OK, message=All nodes are running same PGD versions
status=WARNING, message=There is at least 1 node that is not accessible
status=WARNING, message=There are node(s) running different PGD versions when compared to other nodes

The described behavior is implemented in the function bdr.monitor_group_versions() , which uses PGD version information returned from the view
bdr.group_version_details to provide a cluster-wide version check. For example:

bdrdb==# SELECTSELECT node_name, postgres_version,
bdr_version
 FROMFROM bdr.group_versions_details;
 node_name | postgres_version |
bdr_version
-----------+------------------+-------------
 node1 | 15.2.0 |
5.0.0
 node2 | 15.2.0 |
5.0.0

bdrdb==# SELECTSELECT ** FROMFROM
bdr.monitor_group_versions();

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 244

https://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE

Monitoring Raft consensus

Raft consensus must be working cluster-wide at all times. The impact of running a EDB Postgres Distributed cluster without Raft consensus working might be as
follows:

The replication of PGD data changes might still work correctly.
Global DDL/DML locks doesn't work.
Galloc sequences eventually run out of chunks.
Eager Replication doesn't work.
Cluster maintenance operations (join node, part node, promote standby) are still allowed, but they might not finish (hanging instead).
Node statuses might not be correctly synced among the PGD nodes.
PGD group replication slot doesn't advance LSN and thus keeps WAL files on disk.

The view bdr.group_raft_details uses the functions bdr.run_on_all_nodes() and bdr.get_raft_status() to retrieve Raft consensus status
from all nodes at the same time. For example:

Raft consensus is working correctly if all of these conditions are met:

A valid state (RAFT_LEADER or RAFT_FOLLOWER) is defined on all nodes.
Only one of the nodes is the RAFT_LEADER .
The leader_id is the same on all rows and must match the node_id of the row where state = RAFT_LEADER .

From time to time, Raft consensus starts a new election to define a new RAFT_LEADER . During an election, there might be an intermediary situation where
there's no RAFT_LEADER , and some of the nodes consider themselves as RAFT_CANDIDATE . The whole election can't take longer than
bdr.raft_election_timeout (by default it's set to 6 seconds). If the query above returns an in-election situation, then wait for
bdr.raft_election_timeout , and run the query again. If after bdr.raft_election_timeout has passed and some the listed conditions are still not

met, then Raft consensus isn't working.

Raft consensus might not be working correctly on only a single node. For example, one of the nodes doesn't recognize the current leader and considers itself as a
RAFT_CANDIDATE . In this case, it's important to make sure that:

All PGD nodes are accessible to each other through both regular and replication connections (check file pg_hba.conf).
PGD versions are the same on all nodes.
bdr.raft_election_timeout is the same on all nodes.

In some cases, especially if nodes are geographically distant from each other or network latency is high, the default value of bdr.raft_election_timeout (6
seconds) might not be enough. If Raft consensus is still not working even after making sure everything is correct, consider increasing
bdr.raft_election_timeout to 30 seconds on all nodes. For PGD 3.6.11 and later, setting bdr.raft_election_timeout requires only a server

reload.

Given how Raft consensus affects cluster operational tasks, and also as Raft consensus is directly responsible for advancing the group slot, monitoring alert levels
are defined as follows:

status=UNKNOWN, message=This node is not part of any PGD group

 status |
message
--------+---
 OK | AllAll nodes are running same BDR
versions

bdrdb==# SELECTSELECT node_id, node_name, state,
leader_id
FROMFROM bdr.group_raft_details;
 node_id | node_name | node_group_name | state |
leader_id
------------+-----------+-----------------+---------------+------------
 1148549230 | node1 | top_group | RAFT_LEADER |
1148549230
 3367056606 | node2 | top_group | RAFT_FOLLOWER |
1148549230

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 245

status=OK, message=Raft Consensus is working correctly
status=WARNING, message=There is at least 1 node that is not accessible
status=WARNING, message=There are node(s) as RAFT_CANDIDATE, an election might be in progress
status=WARNING, message=There is no RAFT_LEADER, an election might be in progress
status=CRITICAL, message=There is a single node in Raft Consensus
status=CRITICAL, message=There are node(s) as RAFT_CANDIDATE while a RAFT_LEADER is defined
status=CRITICAL, message=There are node(s) following a leader different than the node set as RAFT_LEADER

The described behavior is implemented in the function bdr.monitor_group_raft() , which uses Raft consensus status information returned from the view
bdr.group_raft_details to provide a cluster-wide Raft check. For example:

Monitoring replication slots

Each PGD node keeps:

One replication slot per active PGD peer
One group replication slot

For example:

Peer slot names follow the convention bdr_<DATABASE>_<GROUP>_<PEER> , while the PGD group slot name follows the convention
bdr_<DATABASE>_<GROUP> . You can access the group slot using the function bdr.local_group_slot_name() .

Peer replication slots must be active on all nodes at all times. If a peer replication slot isn't active, then it might mean either:

The corresponding peer is shut down or not accessible.
PGD replication is broken.

Grep the log file for ERROR or FATAL , and also check bdr.event_summary on all nodes. The root cause might be, for example, an incompatible DDL was
executed with DDL replication disabled on one of the nodes.

The PGD group replication slot is, however, inactive most of the time. PGD maintains this slot and advances its LSN when all other peers already consumed the
corresponding transactions. Consequently, it's not necessary to monitor the status of the group slot.

The function bdr.monitor_local_replslots() provides a summary of whether all PGD node replication slots are working as expected. For example:

bdrdb==# SELECTSELECT ** FROMFROM bdr.monitor_group_raft();
node_group_name | status |
message
----------------|--------+-------------------------------------
myroup | OK | Raft Consensus isis working
correctly

bdrdb==# SELECTSELECT slot_name, databasedatabase, active,
confirmed_flush_lsn
FROMFROM pg_replication_slots ORDERORDER BYBY slot_name;
 slot_name | databasedatabase | active |
confirmed_flush_lsn
--------------------------+----------+--------+---------------------
 bdr_bdrdb_bdrgroup | bdrdb | f |
0//3110A08
 bdr_bdrdb_bdrgroup_node2 | bdrdb | t |
0//31F4670
 bdr_bdrdb_bdrgroup_node3 | bdrdb | t |
0//31F4670
 bdr_bdrdb_bdrgroup_node4 | bdrdb | t |
0//31F4670

bdrdb==# SELECTSELECT ** FROMFROM bdr.monitor_local_replslots();
 status |
message

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 246

One of the following status summaries is returned:

UNKNOWN : This node is not part of any BDR group
OK : All BDR replication slots are working correctly
OK : This node is part of a subscriber-only group
CRITICAL : There is at least 1 BDR replication slot which is inactive
CRITICAL : There is at least 1 BDR replication slot which is missing

Monitoring transaction COMMITs

By default, PGD transactions are committed only to the local node. In that case, a transaction's COMMIT is processed quickly.

PGD's Commit Scopes feature offers a range of synchronous transaction commit scopes that allow you to balance durability, consistency, and performance for your
particular queries. You can monitor these transactions by examining the bdr.stat_activity catalog. The processes report different wait_event states as
a transaction is committed. This monitoring only covers transactions in progress and doesn't provide historical timing information.

22 EDB Postgres Distributed Command Line Interface

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool for managing your EDB Postgres Distributed cluster. It allows you to run commands
against EDB Postgres Distributed clusters. It's installed automatically on systems in a TPA-deployed PGD cluster. Or it can be installed manually on systems that can
connect to any PGD cluster, such as EDB BigAnimal distributed high-availability clusters or PGD clusters deployed using the EDB PGD for Kubernetes operator.

Installing PGD CLI has instructions on manually installing PGD CLI on various systems.

Using PGD CLI offers an introduction to using the PGD CLI and how to connect to your PGD cluster.

Configuring PGD CLI has details on creating persistent configurations for quicker connections.

PGD CLI's Command reference covers all the available commands to inspect, manage, and get information about cluster resources.

Discovering connection strings shows how to obtain the correct connection strings for your PGD-powered deployment.

22.1 Installing PGD CLI

You can install PGD CLI on any system that can connect to the PGD cluster. To use PGD CLI, you need a user with PGD superuser privileges or equivalent. The PGD
user with superuser privileges is the bdr_superuser role. An example of an equivalent user is edb_admin on an EDB BigAnimal distributed high-availability cluster.

Installing automatically with Trusted Postgres Architect (TPA)

By default, Trusted Postgres Architect installs and configures PGD CLI on each PGD node. If you want to install PGD CLI on any non-PGD instance in the cluster,
attach the pgdcli role to that instance in Trusted Postgres Architect's configuration file before deploying. See Trusted Postgres Architect for more information.

Installing manually on Linux

--------+---
 OK | AllAll BDR replication slots are working
correctly

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 247

https://www.enterprisedb.com/docs/tpa/latest/

PGD CLI is installable from the EDB repositories, which you can access with your EDB account. PGD users and BigAnimal users, including those on a free trial, have
an EDB account and access to PGD CLI.

Obtain your EDB subscription token

These repositories require a token to enable downloads from them. To obtain your token, log in to EDB Repos 2.0. If this is your first time visiting the EDB Repos 2.0
page, you must select Request AccessRequest Access to generate your token. Once a generated token is available, select the CopyCopy icon to copy it to your clipboard, or select the eye
icon to view it.

Set the EDB_SUBSCRIPTION_TOKEN environment variable

Once you have the token, execute the command shown for your operating system, substituting your token for <your-token> .

export EDB_SUBSCRIPTION_TOKEN=<your-token>

Then run the appropriate commands for your operating system.

Install on Debian or Ubuntu

If this command returns an error like curl: (22) The requested URL returned error: 404 , check that you entered the correct token.

When the command is successful, you'll see output like this:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...
...

You can now install the PGD CLI package using the command:

sudo apt-get install edb-pgd5-cli

Install on RHEL, Rocky, AlmaLinux, or Oracle Linux

If this command returns an error like curl: (22) The requested URL returned error: 404 , check that you entered the correct token.

When the command is successful, you'll see output like this:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...
...

You can now install the PGD CLI package using the command:

sudo yum install edb-pgd5-cli

Next: Using PGD CLI

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.deb.sh" || sudo
-E bash

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.rpm.sh" || sudo
-E bash

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 248

https://www.enterprisedb.com/repos-downloads

22.2 Using PGD CLI

What is the PGD CLI?

The PGD CLI is a convenient way to connect to and manage your PGD cluster. To use it, you need a user with PGD superuser privileges or equivalent. The PGD user
with superuser privileges is the bdr_superuser role. An example of an equivalent user is edb_admin on an EDB BigAnimal distributed high-availability cluster.

Setting passwordsSetting passwords

PGD CLI doesn't interactively prompt for your password. You must pass your password using one of the following methods:

Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password.
Setting the password in the PGPASSWORD environment variable.
Including the password in the connection string.

We recommend the first option, as the other options don't scale well with multiple databases, or they compromise password confidentiality.

Running the PGD CLI

Once you have installed pgd-cli, run the pgd command to access the PGD command line interface. The pgd command needs details about the host, port, and
database to connect to, along with your username and password.

Passing a database connection string

Use the --dsn flag to pass a database connection string to the pgd command. When you pass the connection string with the --dsn flag, you don't need a
configuration file. The flag takes precedence even if a configuration file is present. For example:

See pgd in the command reference for a description of the command options.

Specifying a configuration file

If a pgd-cli-config.yml file is in /etc/edb/pgd-cli or $HOME/.edb/pgd-cli , pgd uses it. You can override this behavior using the optional -f
or --config-file flag. For example:

Specifying the output format

pgd show-nodes --dsn "host=bdr-a1 port=5432 dbname=bdrdb user=enterprisedb"

pgd show-nodes -f /opt/my-
config.yml
Node Node ID Group Type Current State Target State Status Seq
ID
---- ------- ----- ---- ------------- ------------ ------ ------
p-vjljj303dk-a-1 2573417965 p-vjljj303dk-a data ACTIVE ACTIVE Up
1
p-vjljj303dk-a-2 126163807 p-vjljj303dk-a data ACTIVE ACTIVE Up
2
p-vjljj303dk-a-3 3521351376 p-vjljj303dk-a witness ACTIVE ACTIVE Up
3

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 249

https://www.postgresql.org/docs/current/libpq-pgpass.html

Use the -o or --output flag to change the default output format to JSON or YAML. For example:

The PGD CLI supports the following output formats.

Setting Format Considerations

none Tabular Default format. This setting presents the data in tabular form.

json JSON Presents the raw data with no formatting. For some commands, the JSON output might show more data than the tabular output, such as
extra fields and more detailed messages.

yaml YAML Similar to the JSON output but as YAML and with the fields ordered alphabetically. Experimental and might not be fully supported in
future versions.

Accessing the command line help

To list the supported commands, enter:

For help with a specific command and its parameters, enter pgd help <command_name> . For example:

Avoiding stale dataAvoiding stale data

The PGD CLI can return stale data on the state of the cluster if it's still connecting to nodes previously parted from the cluster. Edit the pgd-cli-
config.yml file, or change your --dsn settings to ensure you are connecting to active nodes in the cluster.

pgd show-nodes -o json
[

{
 "node_id":
2573417965,
 "node_name":"node_name": "p-vjljj303dk-a-1","p-vjljj303dk-a-1",
 "node_group_id":
4169125197,
 "node_group_name": "p-vjljj303dk-a",
 "node_kind_name": "data",
 "current_state": "ACTIVE",
 "target_state": "ACTIVE",
 "status": "Up",
 "node_seq_id": 1,
 "node_local_dbname": "bdrdb",
 "interface_connstr": "host=p-vjljj303dk-a-1-node.vmk31wilqpjeopka.biganimal.io user=streaming_replica
sslmode=verify-full port=5432 sslkey=/controller/certificates/streaming_replica.key
sslcert=/controller/certificates/streaming_replica.crt sslrootcert=/controller/certificates/server-ca.crt
application_name=p-vjljj303dk-a-1 dbname=bdrdb",
 "route_priority": -1,
 "route_fence":
false,
 "route_writes": true,
 "route_reads": true,
 "route_dsn": "host=p-vjljj303dk-a-1-node.vmk31wilqpjeopka.biganimal.io user=streaming_replica
sslmode=verify-full port=5432 sslkey=/controller/certificates/streaming_replica.key
sslcert=/controller/certificates/streaming_replica.crt sslrootcert=/controller/certificates/server-ca.crt
application_name=p-vjljj303dk-a-1 dbname=bdrdb"
 }},
...
]

pgd help

pgd help show-nodes

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 250

22.3 Configuring PGD CLI

PGD CLI can be installed on any system that can connect to the PGD cluster. To use PGD CLI, you need a user with PGD superuser privileges or equivalent. The PGD
user with superuser privileges is the bdr_superuser role. An example of an equivalent user is edb_admin on a BigAnimal distributed high-availability cluster.

PGD CLI and database connection strings

You might not need a database connection string. For example, when Trusted Postgres Architect installs the PGD CLI on a system, it also configures the connection
to the PGD cluster, which means that the PGD CLI can connect to the cluster when run.

If you're installing PGD CLI manually, you must give PGD CLI a database connection string so it knows which PGD cluster to connect to.

Setting passwordsSetting passwords

PGD CLI doesn't interactively prompt for your password. You must pass your password using one of the following methods:

Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password.
Setting the password in the PGPASSWORD environment variable.
Including the password in the connection string.

We recommend the first option, as the other options don't scale well with multiple databases, or they compromise password confidentiality.

If you don't know the database connection strings for your PGD-powered deployment, see discovering connection strings, which helps you to find the right
connection strings for your cluster.

Once you have that information, you can continue.

Configuring the database to connect to

PGD CLI takes its database connection information from either the PGD CLI configuration file or the command line.

Using database connection strings in the command line

You can pass the connection string directly to pgd using the --dsn option. For details, see the sample use case. For example:

pgd --dsn "host=bdr-a1 port=5432 user=enterprisedb" show-version

Using a configuration file

Use the pgd-cli-config.yml configuration file to specify the database connection string for your cluster. The configuration file must contain the database
connection string for at least one PGD node in the cluster. The cluster name is optional and isn't validated.

For example:

cluster::
 name:: cluster-
name
 endpoints::
 -- "host=bdr-a1 port=5432 dbname=bdrdb user=enterprisedb"
 -- "host=bdr-b1 port=5432 dbname=bdrdb user=enterprisedb"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 251

https://www.postgresql.org/docs/current/libpq-pgpass.html

By default, pgd-cli-config.yml is located in the /etc/edb/pgd-cli directory. The PGD CLI searches for pgd-cli-config.yml in the following
locations. Precedence order is high to low.

1. /etc/edb/pgd-cli (default)
2. $HOME/.edb/pgd-cli

If your configuration file isn't in either of these directories, you can use the optional -f or --config-file flag on a pgd command to set the file to read as
configuration. See the sample use case.

22.4 Discovering connection strings

You can install PGD CLI on any system that can connect to the PGD cluster. To use PGD CLI, you need a user with PGD superuser privileges or equivalent. The PGD
user with superuser privileges is the bdr_superuser role. An example of an equivalent user is edb_admin on an EDB BigAnimal distributed high-availability cluster.

PGD CLI and database connection strings

You might not need a database connection string. For example, when Trusted Postgres Architect installs the PGD CLI on a system, it also configures the connection
to the PGD cluster. This means that PGD CLI can connect to the cluster when run.

Getting your database connection string

Because of the range of different configurations that PGD supports, every deployment method has a different way of deriving a connection string for it. Generally,
you can obtain the required information from the configuration of your deployment. You can then assemble that information into connection strings.

For a TPA-deployed PGD cluster

Because TPA is so flexible, you have to derive your connection string from your cluster configuration file (config.yml).

You need the name or IP address of a host with the role pgd-proxy listed for it. This host has a proxy you can connect to. Usually the proxy listens on port
6432. (Check the setting for default_pgd_proxy_options and listen_port in the config to confirm.)
The default database name is bdrdb . (Check the setting bdr_database in the config to confirm.)
The default PGD superuser is enterprisedb for EDB Postgres Advanced Server and postgres for PostgreSQL and EDB Postgres Extended Server.

You can then assemble a connection string based on that information:

"host=<hostnameOrIPAddress> port=<portnumber> dbname=<databasename> user=<username> sslmode=require"

To illustrate this, here are some excerpts of a config.yml file for a cluster:

 -- "host=bdr-c1 port=5432 dbname=bdrdb user=enterprisedb"

...
cluster_vars:

...
 bdr_database: bdrdb

...

default_pgd_proxy_options:
 listen_port: 6432

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 252

The connection string for this cluster is:

"host=192.168.100.2 port=6432 dbname=bdrdb user=enterprisedb sslmode=require"

Host name versus IP addressHost name versus IP address

The example uses the IP address because the configuration is from a Docker TPA install with no name resolution available. Generally, you can use the
host name as configured.

For an EDB BigAnimal distributed high-availability cluster

1. Log in to the BigAnimal clusters view.
2. In the filter, set Cluster TypeCluster Type to Distributed High AvailabilityDistributed High Availability to show only clusters that work with PGD CLI.
3. Select your cluster.
4. In the view of your cluster, select the ConnectConnect tab.
5. Copy the read/write URI from the connection info. This is your connection string.

For a cluster deployed with EDB PGD for Kubernetes

As with TPA, EDB PGD for Kubernetes is very flexible, and there are multiple ways to obtain a connection string. It depends, in large part, on how the services were
configured for the deployment:

If you use the Node Service Template, direct connectivity to each node and proxy service is available.
If you use the Group Service Template, there's a gateway service to each group.
If you use the Proxy Service Template, a single proxy provides an entry point to the cluster for all applications.

Consult your configuration file to determine this information.

Establish a host name or IP address, port, database name, and username. The default database name is bdrdb , and the default username is enterprisedb for EDB
Postgres Advanced Server and postgres for PostgreSQL and EDB Postgres Extended Server.

You can then assemble a connection string based on that information:

"host=<hostnameOrIPAddress> port=<portnumber> dbname=<databasename> user=<username>"

If the deployment's configuration requires it, add sslmode=<sslmode> .

...

instances:
- Name:
kaboom
 backup: kapok
 location:
dc1
 node:
1
 role:
 -
bdr
 - pgd-
proxy
 networks:
 - ipv4_address:
192.168.100.2
 name:
tpanet
...

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 253

https://portal.biganimal.com/clusters
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/connectivity/#services

22.5 Command reference

pgd is the command name for the PGD command line interface.

Synopsis

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool to manage your EDB Postgres Distributed cluster. It allows you to run commands against
EDB Postgres Distributed clusters. You can use it to inspect and manage cluster resources.

Options

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -h, --help help for pgd
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

See also

check-health
create-proxy
delete-proxy
set-group-options
set-node-options
set-proxy-options
show-clockskew
show-events
show-groups
show-nodes
show-proxies
show-raft
show-replslots
show-subscriptions
show-version
switchover
verify-cluster
verify-settings

22.5.1 check-health

Checks the health of the EDB Postgres Distributed cluster.

Synopsis

Performs various checks such as if all nodes are accessible and all replication slots are working.

Please note that the current implementation of clock skew may return an inaccurate skew value if the cluster is under high load while running this command or has

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 254

large number of nodes in it.

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd check-health

 Check Status Message
 ----- ------ -------
 ClockSkew Critical Clockskew cannot be determined for at least 1 BDR node pair
 Connection Critical The node bdr-b1 is not accessible
 Raft Warning There is at least 1 node that is not accessible
 Replslots Critical There is at least 1 BDR replication slot which is inactive
 Version Warning There is at least 1 node that is not accessible

 Example 2 (3 node cluster, all nodes are up but system clocks are not in sync)

 $ pgd check-health

 Check Status Message
 ----- ------ -------
 ClockSkew Warning At least 1 BDR node pair has clockskew greater than 2 seconds
 Connection Ok All BDR nodes are accessible
 Raft Ok Raft Consensus is working correctly
 Replslots Ok All BDR replication slots are working correctly
 Version Ok All nodes are running same BDR versions

 Example 3 (3 node cluster, all nodes are up and all checks are Ok)

 $ pgd check-health

 Check Status Message
 ----- ------ -------
 ClockSkew Ok All BDR node pairs have clockskew within permissible limit
 Connection Ok All BDR nodes are accessible
 Raft Ok Raft Consensus is working correctly
 Replslots Ok All BDR replication slots are working correctly
 Version Ok All nodes are running same BDR versions

Options

 -h, --help help for check-health

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")

pgd check-health
[flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 255

 -o, --output string output format: json, yaml

22.5.2 create-proxy

Creates proxy in the EDB Postgres Distributed cluster.

Synopsis

Creates proxy in the EDB Postgres Distributed cluster and attaches it to the given group. The proxy name must be unique across the cluster and match with the
name given in the corresponding proxy config file.

Examples

 Example 1 (attach new proxy called proxy-a1 to group bdrgroup)

 $ pgd create-proxy --proxy-name proxy-a1 --group-name bdrgroup
 proxy created successfully

Options

 --group-name string group name
 -h, --help help for create-proxy
 --proxy-name string proxy name

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.3 delete-proxy

Deletes proxy from the EDB Postgres Distributed cluster.

Synopsis

Deletes proxy from the EDB Postgres Distributed cluster.

pgd create-proxy [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 256

Examples

 Example 1 (delete proxy proxy-a1)

 $ pgd delete-proxy --proxy-name proxy-a1
 proxy deleted successfully

Options

 -h, --help help for delete-proxy
 --proxy-name string proxy name

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.4 set-group-options

Sets group options such as 'enable_raft', 'enable_proxy_routing', and 'location'.

Synopsis

You can set the following group options with this command:

'enable_raft'
'enable_proxy_routing'
'location'
'route_writer_max_lag'

Both 'enable_raft' and 'enable_proxy_routing' must be true if proxy is attached to the group.

Use 'pgd show-groups -o json' to view option values for each group.

Examples

 Example 1 (comma separated multiple options, spaces are not allowed)

pgd delete-proxy [flags]

pgd set-group-options [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 257

 $ pgd set-group-options --group-name bdrgroup --option enable_proxy_routing=true,route_writer_max_lag=1000000
 group options updated successfully

 Example 2 (multiple --option flags are allowed)

 $ pgd set-group-options --group-name bdrgroup --option enable_proxy_routing=true --option
route_writer_max_lag=1000000
 group options updated successfully

 Example 3 (use double quote if option value has spaces or special characters)

 $ pgd set-group-options --group-name bdrgroup --option "location = mumbai" --option "route_writer_max_lag =
1000000"
 group options updated successfully

Options

 --group-name string group name
 -h, --help help for set-group-options
 --option strings option in name=value format

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.5 set-node-options

Sets node options such as 'route_fence', 'route_priority', and 'route_writes'.

Synopsis

You can set the following node options with this command:

'route_dsn'
'route_fence'
'route_priority'
'route_writes'

Use 'pgd show-nodes -o json' to view option values for each node.

Examples

pgd set-node-options [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 258

 Example 1 (comma separated multiple options, spaces are not allowed)

 $ pgd set-node-options --node-name bdr-a1 --option route_priority=100,route_fence=true
 node options updated successfully

 Example 2 (multiple --option flags are allowed)

 $ pgd set-node-options --node-name bdr-a1 --option route_priority=100 --option route_fence=true
 node options updated successfully

 Example 3 (use double quote if option value has spaces or special characters)

 $ pgd set-node-options --node-name bdr-a1 --option "route_priority = 100" --option "route_fence = true"
 node options updated successfully

Options

 -h, --help help for set-node-options
 --node-name string node name
 --option strings option in name=value format

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.6 set-proxy-options

Sets proxy options such as 'listen_address', 'listen_port', and 'max_client_conn'.

Synopsis

You can set the following proxy options with this command:

'listen_address'
'listen_port'
'max_client_conn'
'max_server_conn'
'server_conn_keepalive'
'server_conn_timeout'
'consensus_grace_period'

After updating any of these options, restart proxy.

Use 'pgd show-proxies -o json' to view option values for each proxy.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 259

Examples

 Example 1 (comma separated multiple options, spaces are not allowed)

 $ pgd set-proxy-options --proxy-name proxy-a1 --option listen_address=0.0.0.0,listen_port=6432
 proxy options updated successfully, please restart proxy service

 Example 2 (multiple --option flags are allowed)

 $ pgd set-proxy-options --proxy-name proxy-a1 --option listen_address=0.0.0.0 --option listen_port=6432
 proxy options updated successfully, please restart proxy service

 Example 3 (use double quote if option value has spaces or special characters)

 $ pgd set-proxy-options --proxy-name proxy-a1 --option "listen_address = 0.0.0.0" --option "listen_port = 6432"
 proxy options updated successfully, please restart proxy service

Options

 -h, --help help for set-proxy-options
 --option strings option in name=value format
 --proxy-name string proxy name

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.7 show-clockskew

Shows the status of clock skew between each BDR node pair.

Synopsis

Shows the status of clock skew between each BDR node pair in the cluster.

Please note that the current implementation of clock skew may return an inaccurate skew value if the cluster is under high load while running this command or has
large number of nodes in it.

Symbol Meaning
------- --------

pgd set-proxy-options [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 260

* ok
~ warning (skew > 2 seconds)
! critical (skew > 5 seconds)
x down / unreachable
? unknown
- n/a

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-clockskew

 Node bdr-a1 bdr-b1 bdr-c1 Current Time
 ---- ------ ------ ------ ------------
 bdr-a1 * ? * 2022-03-30 07:02:21.334472
 bdr-b1 x * x x
 bdr-c1 * ? * 2022-03-30 07:02:21.186809

 Example 2 (3 node cluster, all nodes are up)

 $ pgd show-clockskew

 Node bdr-a1 bdr-b1 bdr-c1 Current Time
 ---- ------ ------ ------ ------------
 bdr-a1 * * * 2022-03-30 07:04:54.147017
 bdr-b1 * * * 2022-03-30 07:04:54.340543
 bdr-c1 * * * 2022-03-30 07:04:53.90451

Options

 -h, --help help for show-clockskew

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.8 show-events

Shows events such as background worker errors and node membership changes.

Synopsis

pgd show-clockskew [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 261

Shows events such as background worker errors and node membership changes. Output is sorted by Time column in descending order. Message column is
truncated after a few lines. To view complete message use json output format ('-o json').

For more details on each node state, see show-nodes command help ('pgd show-nodes -h').

Examples

 Example 1 (3 node cluster)

 $ pgd show-events --lines 10

 Time Observer Node Subject Node Source Type Subtype Message
 ---- ------------- ------------ ------ ---- ------- -------
 2023-03-23 05:38:25.243257+00 witness-a1 witness-a1 consensus RAFT STATE_CHANGE RAFT_LEADER
 2023-03-23 05:38:25.23815+00 witness-a1 witness-a1 consensus RAFT STATE_CHANGE RAFT_CANDIDATE
 2023-03-23 05:38:21.197974+00 bdr-a1 bdr-a1 consensus RAFT STATE_CHANGE RAFT_FOLLOWER
 2023-03-23 05:38:21.197107+00 witness-a1 witness-a1 consensus RAFT STATE_CHANGE RAFT_FOLLOWER
 2023-03-23 05:38:21.169781+00 bdr-a2 bdr-a2 consensus RAFT STATE_CHANGE RAFT_FOLLOWER
 2023-03-23 05:38:17.949669+00 witness-a1 bdr-a1 consensus NODE STATE_CHANGE ACTIVE
 2023-03-23 05:38:17.949544+00 bdr-a1 bdr-a1 consensus NODE STATE_CHANGE ACTIVE
 2023-03-23 05:38:17.946857+00 bdr-a2 bdr-a1 consensus NODE STATE_CHANGE ACTIVE
 2023-03-23 05:38:17.91628+00 bdr-a1 bdr-a2 receiver WORKER ERROR pglogical worker received
fast finish request, exiting
 2023-03-23 05:38:17.915236+00 witness-a1 bdr-a1 consensus NODE STATE_CHANGE PROMOTING

Options

 -h, --help help for show-events
 -n, --lines int show top n lines

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.9 show-groups

Shows all groups in the EDB Postgres Distributed cluster and their summary.

Synopsis

Shows all groups in the EDB Postgres Distributed cluster and their summary.

pgd show-events [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 262

In some cases when the raft isn't working properly or the group raft leader isn't present, this command might show stale or incorrect write leader for that group.

Examples

 Example 1 (multi-group cluster, with special witness-only data group
 group_c and subscriber-only group group_so)
 Note:
 1. For group write leader election both enable_raft and
 enable_proxy_routing options should be true for that group
 2. enable_raft is always set to true for global group

 $ pgd show-groups

 Group Group ID Type Parent Group Location Raft Routing Write Leader
 ----- -------- ---- ------------ -------- ---- ------- ------------
 bdrgroup 1360502012 global true false
 group_a 3618712053 data bdrgroup a true true bdr-a1
 group_b 402614658 data bdrgroup b true true bdr-b1
 group_c 2808307099 data bdrgroup c false false
 group_so 2123208041 subscriber-only bdrgroup c false false

Options

 -h, --help help for show-groups

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.10 show-nodes

Shows all nodes in the EDB Postgres Distributed cluster and their summary.

Synopsis

Shows all nodes in the EDB Postgres Distributed cluster and their summary, including name, node id, group, and current/target state.

Node States

NONE: Node state is unset when the worker starts, expected to be set quickly to the current known state.
CREATED: bdr.create_node() has been executed, but the node is not a member of any EDB Postgres Distributed cluster yet.
JOIN_START: bdr.join_node_group() begins to join the local node to an existing EDB Postgres Distributed cluster.
JOINING: The node join has started and is currently at the initial sync phase, creating the schema and data on the node.

pgd show-groups [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 263

CATCHUP: Initial sync phase is completed; now the join is at the last step of retrieving and applying transactions that were performed on the upstream peer
node since the join started.
STANDBY: Node join has finished, but not yet started to broadcast changes. All joins spend some time in this state, but if defined as a Logical Standby, the
node will continue in this state.
PROMOTE: Node was a logical standby and we just called bdr.promote_node to move the node state to ACTIVE. These two PROMOTE states have to be
coherent to the fact, that only one node can be with a state higher than STANDBY but lower than ACTIVE.
PROMOTING: Promotion from logical standby to full BDR node is in progress.
ACTIVE: The node is a full BDR node and is currently ACTIVE. This is the most common node status.
PART_START: Node was ACTIVE or STANDBY and we just called bdr.part_node to remove the node from the EDB Postgres Distributed cluster.
PARTING: Node disconnects from other nodes and plays no further part in consensus or replication.
PART_CATCHUP: Non-parting nodes synchronize any missing data from the recently parted node.
PARTED: Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING.

Note that the read-only state of a node, as shown in the Current State or in the Target State columns, is indicated as STANDBY.

Examples

 Example 1 (3 node cluster, bdr-a1 and witness-a are up, bdr-a2 is down)

 $ pgd show-nodes

 Node Node ID Group Type Current State Target State Status Seq ID
 ---- ------- ----- ---- ------------- ------------ ------ ------
 bdr-a1 3136956818 group_a data ACTIVE ACTIVE Up 1
 bdr-a2 2133699692 group_a data ACTIVE ACTIVE Unreachable 2
 witness-a 3889635963 group_a witness ACTIVE ACTIVE Up 3

 Example 2 (multi-group cluster with witness, logical standby and
 subscriber-only nodes)
 Note: In contrast to logical standby, the subscriber-only nodes are fully
 joined node to the cluster

 $ pgd show-nodes

 Node Node ID Group Type Current State Target State Status Seq ID
 ---- ------- ----- ---- ------------- ------------ ------ ------
 bdr-a1 3136956818 group_a data ACTIVE ACTIVE Up 6
 bdr-a2 2133699692 group_a data ACTIVE ACTIVE Up 3
 logical-standby-a1 1140256918 group_a standby STANDBY STANDBY Up 9
 witness-a 3889635963 group_a witness ACTIVE ACTIVE Up 7
 bdr-b1 2380210996 group_b data ACTIVE ACTIVE Up 1
 bdr-b2 2244996162 group_b data ACTIVE ACTIVE Up 2
 logical-standby-b1 3541792022 group_b standby STANDBY STANDBY Up 10
 witness-b 661050297 group_b witness ACTIVE ACTIVE Up 5
 witness-c 1954444188 group_c witness ACTIVE ACTIVE Up 4
 subscriber-only-c1 2448841809 group_so subscriber-only ACTIVE ACTIVE Up 8

Options

 -h, --help help for show-nodes

Options inherited from parent commands

pgd show-nodes [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 264

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.11 show-proxies

Shows all proxies in the EDB Postgres Distributed cluster and their summary.

Synopsis

Shows all proxies in the EDB Postgres Distributed cluster and their summary.

We recommend giving all the proxies attached to the same group the same proxy option values.

Examples

 Example 1 (multi-group cluster, with 2 proxies attached to each data group)

 $ pgd show-proxies

 Proxy Group Listen Addresses Listen Port
 ----- ----- ---------------- -----------
 proxy-a1 group_a [0.0.0.0] 6432
 proxy-a2 group_a [0.0.0.0] 6432
 proxy-b1 group_b [0.0.0.0] 6432
 proxy-b2 group_b [0.0.0.0] 6432

Options

 -h, --help help for show-proxies

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.12 show-raft

pgd show-proxies [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 265

Shows BDR Raft (consensus protocol) details.

Synopsis

Shows BDR Raft (consensus protocol) details such as Raft instance id, Raft state (leader, follower), and Raft term. If Raft is enabled at subgroup level, then that
subgroup's Raft instance is also shown.

In some cases, such as network partition, output might vary based on the node to which the CLI is connected.

Examples

 Example 1 (multi-group cluster with subgroup Raft and with witness,
 logical standby, subscriber-only nodes)
 Note: Unlike data or witness node, logical standby and subscriber-only
 nodes don't have Raft voting rights (see Voting Nodes column).

 $ pgd show-raft

 Instance Group Node Raft State Raft Term Commit Index Nodes Voting Nodes Protocol Version
 -------- ----- ---- ---------- --------- ------------ ----- ------------ ----------------
 1 bdrgroup bdr-b1 RAFT_LEADER 0 383 10 7 5000
 1 bdrgroup bdr-a1 RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup bdr-a2 RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup bdr-b2 RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup logical-standby-a1 RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup logical-standby-b1 RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup subscriber-only-c1 RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup witness-a RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup witness-b RAFT_FOLLOWER 0 383 10 7 5000
 1 bdrgroup witness-c RAFT_FOLLOWER 0 383 10 7 5000
 2 group_a witness-a RAFT_LEADER 1 2 4 3 0
 2 group_a bdr-a1 RAFT_FOLLOWER 1 2 4 3 0
 2 group_a bdr-a2 RAFT_FOLLOWER 1 2 4 3 0
 2 group_a logical-standby-a1 RAFT_FOLLOWER 1 2 4 3 0
 3 group_b witness-b RAFT_LEADER 1 2 4 3 0
 3 group_b bdr-b1 RAFT_FOLLOWER 1 2 4 3 0
 3 group_b bdr-b2 RAFT_FOLLOWER 1 2 4 3 0
 3 group_b logical-standby-b1 RAFT_FOLLOWER 1 2 4 3 0

Options

 -h, --help help for show-raft

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

pgd show-raft [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 266

22.5.13 show-replslots

Shows the status of BDR replication slots.

Synopsis

Shows the status of BDR replication slots. Output with the verbose flag gives details such as is slot active, replication state (disconnected, streaming, catchup), and
approximate lag.

Symbol Meaning
------- --------
* ok
~ warning (lag > 10M)
! critical (lag > 100M OR slot is 'inactive' OR 'disconnected')
x down / unreachable
- n/a

In matrix view, sometimes byte lag is shown in parentheses. It is a
maxOf(WriteLag, FlushLag, ReplayLag, SentLag).

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-replslots

 Node bdr-a1 bdr-b1 bdr-c1
 ---- ------ ------ ------
 bdr-a1 * !(6.6G) *
 bdr-b1 x * x
 bdr-c1 * !(6.9G) *

 $ pgd show-replslots --verbose

 Origin Node Target Node Status (active/state) Write Lag (bytes/duration) Flush Lag (bytes/duration)
Replay Lag (bytes/duration) Sent Lag (bytes)
 ----------- ----------- --------------------- -------------------------- -------------------------- ----------
----------------- ----------------
 bdr-a1 bdr-b1 f / disconnected 6.6G / 8 days 02:58:36.243723 6.6G / 8 days 02:58:36.243723 6.6G /
8 days 02:58:36.243723 6.6G
 bdr-a1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B /
00:00:00 0B
 bdr-c1 bdr-a1 t / streaming 0B / 00:00:00.000812 0B / 00:00:00.000812 0B /
00:00:00.000812 0B
 bdr-c1 bdr-b1 f / disconnected 6.9G / 8 days 02:58:36.004415 6.9G / 8 days 02:58:36.004415 6.9G /
8 days 02:58:36.004415 6.9G

 Example 2 (3 node cluster, bdr-b1 was down and it has just been restarted)

 $ pgd show-replslots

 Node bdr-a1 bdr-b1 bdr-c1

pgd show-replslots [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 267

 ---- ------ ------ ------
 bdr-a1 * !(6.9G) *
 bdr-b1 * * *
 bdr-c1 * !(5.8G) *

 $ pgd show-replslots --verbose

 Origin Node Target Node Status (active/state) Write Lag (bytes/duration) Flush Lag (bytes/duration) Replay Lag
(bytes/duration) Sent Lag (bytes)
 ----------- ----------- --------------------- -------------------------- -------------------------- ----------------
----------- ----------------
 bdr-a1 bdr-b1 t / catchup 6.9G / 00:00:00.000778 6.9G / 00:00:00.000778 6.9G /
00:00:00.000778 6.9G
 bdr-a1 bdr-c1 t / streaming 0B / 00:00:00.104121 0B / 00:00:00.104133 0B /
00:00:00.104133 0B
 bdr-b1 bdr-a1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B / 00:00:00
0B
 bdr-b1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B / 00:00:00
0B
 bdr-c1 bdr-a1 t / streaming 6.8K / 00:00:00 6.8K / 00:00:00 6.8K /
00:00:00 6.8K
 bdr-c1 bdr-b1 t / catchup 5.5G / 00:00:00.008257 5.5G / 00:00:00.008257 5.5G /
00:00:00.008257 5.5G

 Example 3 (3 node cluster, all nodes are up and in 'streaming' state)

 $ pgd show-replslots

 Node bdr-a1 bdr-b1 bdr-c1
 ---- ------ ------ ------
 bdr-a1 * * *
 bdr-b1 * * *
 bdr-c1 * * *

 $ pgd show-replslots --verbose

 Origin Node Target Node Status (active/state) Write Lag (bytes/duration) Flush Lag (bytes/duration) Replay Lag
(bytes/duration) Sent Lag (bytes)
 ----------- ----------- --------------------- -------------------------- -------------------------- ----------------
----------- ----------------
 bdr-a1 bdr-b1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B / 00:00:00
0B
 bdr-a1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B / 00:00:00
0B
 bdr-b1 bdr-a1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B / 00:00:00
0B
 bdr-b1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B / 00:00:00
0B
 bdr-c1 bdr-a1 t / streaming 0B / 00:00:00 528B / 00:00:00 528B /
00:00:00 0B
 bdr-c1 bdr-b1 t / streaming 528B / 00:00:00 528B / 00:00:00 528B /
00:00:00 0B

 Example 4 (cluster with witness, logical standby and subscriber-only nodes;
 upstream for logical-standby-a1 is bdr-a1 and for logical-standby-b1 it is bdr-b1)
 Note:
 1. A logical standby is sent data only by one source node, but no other
 nodes receive replication changes from it
 2. Subscriber-only node subscribes to replication changes from other nodes
 in the cluster, but no other nodes receive replication changes from it

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 268

 $ pgd show-replslots

 Node bdr-a1 bdr-b1 logical-standby-a1 logical-standby-b1 subscriber-only-c1 witness-c1
 ---- ------ ------ ------------------ ------------------ ------------------ ----------
 bdr-a1 * * * - * *
 bdr-b1 * * - * * *
 logical-standby-a1 - - * - - -
 logical-standby-b1 - - - * - -
 subscriber-only-c1 - - - - * -
 witness-c1 * * - - * *

Options

 -h, --help help for show-replslots
 -v, --verbose verbose output

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.14 show-subscriptions

Shows BDR subscription (incoming replication) details.

Synopsis

Shows BDR subscription (incoming replication) details such as origin/target node, timestamp of the last replayed transaction, and lag between now and the
timestamp of the last replayed transaction.

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-c1 2022-04-23 13:13:40.854433+00 0.514275
 bdr-b1 bdr-a1
 bdr-b1 bdr-c1
 bdr-c1 bdr-a1 2022-04-23 13:13:40.852233+00 0.335464

pgd show-subscriptions [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 269

 Example 2 (3 node cluster, bdr-b1 was down and it has just been restarted)

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-b1 2022-04-23 13:14:45.669254+00 0.001686
 bdr-a1 bdr-c1 2022-04-23 13:14:46.157913+00 -0.002009
 bdr-b1 bdr-a1
 bdr-b1 bdr-c1
 bdr-c1 bdr-a1 2022-04-23 13:14:45.698472+00 0.259521
 bdr-c1 bdr-b1 2022-04-23 13:14:45.667979+00 0.002961

 Example 3 (3 node cluster, all nodes are up and in 'streaming' state)

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-b1 2022-04-23 13:15:39.732375+00 0.034462
 bdr-a1 bdr-c1 2022-04-23 13:15:40.179618+00 0.002647
 bdr-b1 bdr-a1 2022-04-23 13:15:39.719994+00 0.305814
 bdr-b1 bdr-c1 2022-04-23 13:15:40.180886+00 0.001379
 bdr-c1 bdr-a1 2022-04-23 13:15:39.714397+00 0.311411
 bdr-c1 bdr-b1 2022-04-23 13:15:39.714397+00 0.052440

 Example 4 (cluster with witness, logical standby and subscriber-only nodes;
 upstream for logical-standby-a1 is bdr-a1 and for logical-standby-b1 it is bdr-b1)
 Note: Logical standby and subscriber-only nodes receive changes but do not
 send changes made locally to other nodes

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-b1 2022-04-23 13:40:49.106411+00 0.853665
 bdr-a1 logical-standby-a1 2022-04-23 13:40:50.72036+00 0.138430
 bdr-a1 logical-standby-b1
 bdr-a1 subscriber-only-c1 2022-04-23 13:40:50.72036+00 0.016226
 bdr-a1 witness-c1 2022-04-23 13:40:50.470142+00 0.001514
 bdr-b1 bdr-a1 2022-04-23 13:40:49.10174+00 1.095422
 bdr-b1 logical-standby-a1
 bdr-b1 logical-standby-b1 2022-04-23 13:40:50.713666+00 0.271213
 bdr-b1 subscriber-only-c1 2022-04-23 13:40:50.713666+00 0.022920
 bdr-b1 witness-c1 2022-04-23 13:40:50.471789+00 -0.000133
 witness-c1 bdr-a1 2022-04-23 13:40:49.107706+00 1.089456
 witness-c1 bdr-b1 2022-04-23 13:40:49.107706+00 0.852370
 witness-c1 logical-standby-a1
 witness-c1 logical-standby-b1
 witness-c1 subscriber-only-c1 2022-04-23 13:40:50.719844+00 0.016742

Options

 -h, --help help for show-subscriptions

Options inherited from parent commands

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 270

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.15 show-version

Shows the version of BDR and Postgres installed on each node.

Synopsis

Shows the version of BDR and Postgres installed on each node in the cluster.

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-version

 Node BDR Version Postgres Version
 ---- ----------- ----------------
 bdr-c1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-a1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-b1

 Example 2 (3 node cluster, all nodes are up)

 $ pgd show-version

 Node BDR Version Postgres Version
 ---- ----------- ----------------
 bdr-c1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-a1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-b1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)

Options

 -h, --help help for show-version

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string

pgd show-version [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 271

 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.16 switchover

Switches over to new write leader.

Synopsis

Switches over to new write leader. Use switchover method 'fast' for immediate switchover. Use 'strict' to wait until lag is less than 'route_writer_max_lag' on the
given target node. If switchover fails due to timeout or any other issue, BDR might elect a write leader that's different from the given target node.

Examples

 Example 1 (with required arguments, default method is 'strict' and default
 timeout is '10s')

 $ pgd switchover --group-name group_a --node-name bdr-a1
 switchover is complete

 Example 2 (with optional arguments)

 $ pgd switchover --group-name group_a --node-name bdr-a1 --method strict --timeout 15s
 switchover is complete

 Example 3 (immediate switchover)

 $ pgd switchover --group-name group_a --node-name bdr-a1 --method fast
 switchover is complete

Options

 --group-name string group name
 -h, --help help for switchover
 --method string switchover method (strict, fast)
 strict - waits until lag on given node is less than route_writer_max_lag
 fast - immediate switchover, route_writer_max_lag is ignored (default "strict")
 --node-name string node name
 --timeout duration timeout period when switchover method is strict (default 10s)

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string

pgd switchover [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 272

 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.17 verify-cluster

Verifies whether the cluster follows the rules as per the AlwaysOn architecture.

Synopsis

Verifies whether the cluster follows the rules as per the AlwaysOn architecture.

Examples

 Example 1 (cluster with not recommended architecture)

 $ pgd verify-cluster

 Check Status Groups
 ----- ------ ------
 There is always at least 1 Global Group and 1 Data Group Ok
 There are at least 2 data nodes in a Data Group (except for the witness-only group) Critical group_b
 There is at most 1 witness node in a Data Group Warning group_a
 Witness-only group does not have any child groups Ok
 There is at max 1 witness-only group iff there is even number of local Data Groups Warning bdrgroup
 There are at least 2 proxies configured per Data Group if routing is enabled Warning group_a, group_b

 Example 2 (cluster with recommended architecture)

 $ pgd verify-cluster

 Check Status Groups
 ----- ------ ------
 There is always at least 1 Global Group and 1 Data Group Ok
 There are at least 2 data nodes in a Data Group (except for the witness-only group) Ok
 There is at most 1 witness node in a Data Group Ok
 Witness-only group does not have any child groups Ok
 There is at max 1 witness-only group iff there is even number of local Data Groups Ok
 There are at least 2 proxies configured per Data Group if routing is enabled Ok

Options

 -h, --help help for verify-cluster

Options inherited from parent commands

pgd verify-cluster [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 273

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

22.5.18 verify-settings

Verifies the EDB Postgres Distributed cluster settings.

Synopsis

Verifies the EDB Postgres Distributed cluster settings.

Examples

 Example 1

 $ pgd verify-settings

 # bdr.accept_connections
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Critical false off must be set to on
 bdr-a2 Ok false on
 bdr-b1 Ok false on
 bdr-b2 Ok false on
 logical-standby-a1 Ok false on
 logical-standby-b1 Ok false on
 subscriber-only-c1 Ok false on
 witness-a Ok false on
 witness-b Ok false on
 witness-c Ok false on
 Warning: value must be same on all primary nodes

 # bdr.ddl_locking
 Ok: all node values are ok

 # bdr.ddl_replication
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Warning false 0 must be set to on
 bdr-a2 Ok false on
 bdr-b1 Ok false on
 bdr-b2 Ok false on
 logical-standby-a1 Ok false on
 logical-standby-b1 Ok false on
 subscriber-only-c1 Ok false on
 witness-a Ok false on
 witness-b Ok false on

pgd verify-settings [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 274

 witness-c Ok false on
 Warning: value must be same on all primary nodes

 # bdr.max_writers_per_subscription
 Ok: all node values are ok

 # bdr.raft_group_max_connections
 Ok: all node values are ok

 # bdr.replay_progress_frequency
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Warning false 61000 must be <= 60000
 bdr-a2 Ok false 60000
 bdr-b1 Ok false 60000
 bdr-b2 Ok false 60000
 logical-standby-a1 Ok false 60000
 logical-standby-b1 Ok false 60000
 subscriber-only-c1 Ok false 60000
 witness-a Ok false 60000
 witness-b Ok false 60000
 witness-c Ok false 60000
 Warning: value must be same on all primary nodes

 # bdr.role_replication
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Warning false off must be set to on
 bdr-a2 Ok false on
 bdr-b1 Ok false on
 bdr-b2 Ok false on
 logical-standby-a1 Ok false on
 logical-standby-b1 Ok false on
 subscriber-only-c1 Ok false on
 witness-a Ok false on
 witness-b Ok false on
 witness-c Ok false on
 Warning: value must be same on all primary nodes

 # bdr.standby_slot_names
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Warning false bdr_bdrdb_ja… must contain valid logical slots of peer data nodes
only
 bdr-a2 Warning false bdr_bdrdb_ja… must contain valid logical slots of peer data nodes
only
 bdr-b1 Warning false must contain valid logical slots of peer data nodes only
 bdr-b2 Warning false must contain valid logical slots of peer data nodes only
 logical-standby-a1 Ok false
 logical-standby-b1 Ok false
 subscriber-only-c1 Ok false
 witness-a Ok false
 witness-b Ok false
 witness-c Ok false

 # bdr.standby_slots_min_confirmed
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Warning false -1 must be >= 1

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 275

 bdr-a2 Warning false -1 must be >= 1
 bdr-b1 Warning false -1 must be >= 1
 bdr-b2 Warning false -1 must be >= 1
 logical-standby-a1 Ok false -1
 logical-standby-b1 Ok false -1
 subscriber-only-c1 Ok false -1
 witness-a Ok false -1
 witness-b Ok false -1
 witness-c Ok false -1

 # bdr.start_workers
 Ok: all node values are ok

 # bdr.xact_replication
 Ok: all node values are ok

 # max_prepared_transactions
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Warning false 16 must be >= 250
 bdr-a2 Warning false 16 must be >= 250
 bdr-b1 Warning false 16 must be >= 250
 bdr-b2 Warning false 16 must be >= 250
 logical-standby-a1 Warning false 16 must be >= 250
 logical-standby-b1 Warning false 16 must be >= 250
 subscriber-only-c1 Warning false 16 must be >= 250
 witness-a Warning false 16 must be >= 250
 witness-b Warning false 16 must be >= 250
 witness-c Warning false 16 must be >= 250

 # max_replication_slots
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Critical false 8 must be >= 10
 bdr-a2 Ok false 12
 bdr-b1 Ok false 12
 bdr-b2 Ok false 12
 logical-standby-a1 Ok false 12
 logical-standby-b1 Ok false 12
 subscriber-only-c1 Ok false 12
 witness-a Ok false 12
 witness-b Ok false 12
 witness-c Ok false 12
 Warning: value must be same on all primary nodes

 # max_wal_senders
 Ok: all node values are ok

 # max_worker_processes
 Ok: all node values are ok

 # shared_preload_libraries
 Node Status Pending Restart Value Message
 ---- ------ --------------- ----- -------
 bdr-a1 Warning false pg_stat_stat… must contain bdr as first entry
 bdr-a2 Warning false pg_stat_stat… must contain bdr as first entry
 bdr-b1 Warning false pg_stat_stat… must contain bdr as first entry
 bdr-b2 Warning false pg_stat_stat… must contain bdr as first entry

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 276

 logical-standby-a1 Warning false pg_stat_stat… must contain bdr as first entry
 logical-standby-b1 Warning false pg_stat_stat… must contain bdr as first entry
 subscriber-only-c1 Warning false pg_stat_stat… must contain bdr as first entry
 witness-a Warning false pg_stat_stat… must contain bdr as first entry
 witness-b Warning false pg_stat_stat… must contain bdr as first entry
 witness-c Warning false pg_stat_stat… must contain bdr as first entry

 # track_commit_timestamp
 Ok: all node values are ok

 # wal_level
 Ok: all node values are ok

Options

 -h, --help help for verify-settings

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-cli/pgd-cli-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

23 Transaction streaming

With logical replication, transactions are decoded concurrently on the publisher but aren't sent to subscribers until the transaction is committed. If the changes
exceed logical_decoding_work_mem (PostgreSQL 13 and later), they're spilled to disk. This means that, particularly with large transactions, there's some
delay before they reach subscribers and might entail additional I/O on the publisher.

Beginning with PostgreSQL 14, transactions can optionally be decoded and sent to subscribers before they're committed on the publisher. The subscribers save the
incoming changes to a staging file (or set of files) and apply them when the transaction commits (or discard them if the transaction aborts). This makes it possible to
apply transactions on subscribers as soon as the transaction commits.

PGD enhancements

PostgreSQL's built-in transaction streaming has the following limitations:

While you no longer need to spill changes to disk on the publisher, you must write changes to disk on each subscriber.
If the transaction aborts, the work (changes received by each subscriber and the associated storage I/O) is wasted.

However, starting with version 3.7, PGD supports parallel apply, enabling multiple writer processes on each subscriber. This capability is leveraged to provide the
following enhancements:

Decoded transactions can be streamed directly to a writer on the subscriber.
Decoded transactions don't need to be stored on disk on subscribers.
You don't need to wait for the transaction to commit before starting to apply the transaction on the subscriber.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 277

Caveats

You must enable parallel apply.
Workloads consisting of many small and conflicting transactions can lead to frequent deadlocks between writers.

NoteNote

Direct streaming to writer is still an experimental feature. Use it with caution. Specifically, it might not work well with conflict resolutions since the
commit timestamp of the streaming might not be available. (The transaction might not yet have committed on the origin.)

Configuration

Configure transaction streaming in two locations:

At node level, using the GUC bdr.default_streaming_mode
At group level, using the function bdr.alter_node_group_config()

Node configuration using bdr.default_streaming_mode

Permitted values are:

off
writer
file
auto

Default value is auto .

Changing this setting requires a restart of the pglogical receiver process for each subscription for the setting to take effect. You can achieve this with a server
restart.

If bdr.default_streaming_mode is set to any value other than off , the subscriber requests transaction streaming from the publisher. How this is provided
can also depend on the group configuration setting. See Node configuration using bdr.default_streaming_mode for details.

Group configuration using bdr.alter_node_group_config()

You can use the parameter streaming_mode in the function bdr.alter_node_group_config() to set the group transaction streaming configuration.

Permitted values are:

off
writer
file
auto
default

The default value is default .

The value of the current setting is contained in the column node_group_streaming_mode from the view bdr.node_group . The value returned is a single
char type, and the possible values are D (default), W (writer), F (file), A (auto), and O (off).

Configuration setting effects

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 278

Transaction streaming is controlled at the subscriber level by the GUC bdr.default_streaming_mode . Unless set to off , which disables transaction
streaming, the subscriber requests transaction streaming.

If the publisher can provide transaction streaming, it streams transactions whenever the transaction size exceeds the threshold set in
logical_decoding_work_mem . The publisher usually has no control over whether the transactions is streamed to a file or to a writer. Except for some

situations (such as COPY), it might hint for the subscriber to stream the transaction to a writer (if possible).

The subscriber can stream transactions received from the publisher to either a writer or a file. The decision is based on several factors:

If parallel apply is off (num_writers = 1), then it's streamed to a file. (writer 0 is always reserved for non-streamed transactions.)
If parallel apply is on but all writers are already busy handling streamed transactions, then the new transaction is streamed to a file. See Monitoring PGD
writers to check PGD writer status.

If streaming to a writer is possible (that is, a free writer is available), then the decision whether to stream the transaction to a writer or a file is based on the
combination of group and node settings as per the following table.

Group Node Streamed to

off (any) (none)

(any) off (none)

writer file file

file writer file

default writer writer

default file file

default auto writer

auto (any) writer

If the group configuration is set to auto , or the group configuration is default and the node configuration is auto , then the transaction is streamed to a
writer only if the publisher hinted to do this.

Currently the publisher hints for the subscriber to stream to the writer for the following transaction types. These are known to be conflict free and can be safely
handled by the writer.

COPY
CREATE INDEX CONCURRENTLY

Monitoring

You can monitor the use of transaction streaming using the bdr.stat_subscription function on the subscriber node.

nstream_writer — Number of transactions streamed to a writer.
nstream_file — Number of transactions streamed to file.
nstream_commit — Number of committed streamed transactions.
nstream_abort — Number of aborted streamed transactions.
nstream_start — Number of streamed transactions that were started.
nstream_stop — Number of streamed transactions that were fully received.

24 Testing and tuning PGD clusters

You can test PGD applications using the following approaches:

Trusted Postgres Architect
pgd_bench with CAMO/Failover options

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 279

Trusted Postgres Architect

Trusted Postgres Architect is the system used by EDB to deploy reference architectures, including those based on EDB Postgres Distributed.

Trusted Postgres Architect includes test suites for each reference architecture. It also simplifies creating and managing a local collection of tests to run against a
TPA cluster, using a syntax like the following:

tpaexec test mycluster mytest

We strongly recommend that developers write their own multi-node suite of Trusted Postgres Architect tests that verify the main expected properties of the
application.

pgd_bench

The Postgres benchmarking application pgbench was extended in PGD 5.0 in the form of a new application: pgd_bench.

pgd_bench is a regular command-line utility that's added to the PostgreSQL bin directory. The utility is based on the PostgreSQL pgbench tool but supports
benchmarking CAMO transactions and PGD-specific workloads.

Functionality of pgd_bench is a superset of those of pgbench but requires the BDR extension to be installed to work properly.

Key differences include:

Adjustments to the initialization (-i flag) with the standard pgbench scenario to prevent global lock timeouts in certain cases.
VACUUM command in the standard scenario is executed on all nodes.

pgd_bench releases are tied to the releases of the BDR extension and are built against the corresponding Postgres distribution. This is reflected in the output
of the --version flag.

The current version allows you to run failover tests while using CAMO or regular PGD deployments.

The following options were added:

-m, --mode=regular|camo|failover
mode in which pgbench should run (default: regular)

Use -m camo or -m failover to specify the mode for pgd_bench. You can use The -m failover specification to test failover in regular PGD
deployments.

--retry
retry transactions on failover

Use --retry to specify whether to retry transactions when failover happens with -m failover mode. This option is enabled by default for -m camo
mode.

In addition to these options, you must specify the connection information about the peer node for failover in DSN form.

Here's an example in a CAMO environment:

This command runs in CAMO mode. It connects to node1 and runs the tests. If the connection to node1 is lost, then pgd_bench connects to node2. It queries node2
to get the status of in-flight transactions. Aborted and in-flight transactions are retried in CAMO mode.

In failover mode, if you specify --retry , then in-flight transactions are retried. In this scenario there's no way to find the status of in-flight transactions.

 pgd_bench -m camo -p $node1_port -h $node1_host bdrdemo \
 "host=$node2_host user=postgres port=$node2_port dbname=bdrdemo"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 280

https://www.enterprisedb.com/docs/tpa/latest
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

Notes on pgd_bench usage

When using custom init-scripts, it's important to understand implications behind the DDL commands. We generally recommend waiting for the secondary
nodes to catch up on the data-load steps before proceeding with DDL operations such as CREATE INDEX . The latter acquire global locks that can't be
acquired until the data load is complete and thus might time out.

No extra steps are taken to suppress client messages, such as NOTICE and WARNING messages emitted by PostgreSQL and or any possible extensions,
including the BDR extension. It's your responsibility to suppress them by setting appropriate variables, such as client_min_messages ,
bdr.camo_enable_client_warnings , and so on.

Performance testing and tuning

PGD allows you to issue write transactions onto multiple nodes. Bringing those writes back together onto each node has a performance cost.

First, replaying changes from another node has a CPU cost and an I/O cost, and it generates WAL records. The resource use is usually less than in the original
transaction since CPU overhead is lower as a result of not needing to reexecute SQL. In the case of UPDATE and DELETE transactions, there might be I/O costs on
replay if data isn't cached.

Second, replaying changes holds table-level and row-level locks that can produce contention against local workloads. The conflict-free replicated data types (CRDT)
and column-level conflict detection (CLCD) features ensure you get the correct answers even for concurrent updates, but they don't remove the normal locking
overheads. If you get locking contention, try to avoid conflicting updates, or keep transactions as short as possible. A heavily updated row in a larger transaction
causes a bottleneck on performance for that transaction. Complex applications require some thought to maintain scalability.

If you think you're having performance problems, develop performance tests using the benchmarking tools. pgd_bench allows you to write custom test scripts
specific to your use case so you can understand the overheads of your SQL and measure the impact of concurrent execution.

If PGD is running slow, then we suggest the following:

1. Write a custom test script for pgd_bench, as close as you can make it to the production system's problem case.
2. Run the script on one node to give you a baseline figure.
3. Run the script on as many nodes as occur in production, using the same number of sessions in total as you did on one node. This technique shows you the

effect of moving to multiple nodes.
4. Increase the number of sessions for these two tests so you can plot the effect of increased contention on your application.
5. Make sure your tests are long enough to account for replication delays.
6. Ensure that replication delay isn't growing during your tests.

Use all of the normal Postgres tuning features to improve the speed of critical parts of your application.

25 Stream triggers

PGD introduces new types of triggers that you can use for additional data processing on the downstream/target node:

Conflict triggers
Transform triggers

Together, these types of triggers are known as stream triggers.

Permissions RequiredPermissions Required

Stream triggers are a PGD feature which requires permission. Any user wishing to create or drop triggers must have at least the bdr_application role
assigned to them.

Stream triggers are designed to be trigger-like in syntax. They leverage the PostgreSQL BEFORE trigger architecture and are likely to have similar performance
characteristics as PostgreSQL BEFORE Triggers.

Multiple trigger definitions can use one trigger function, just as with normal PostgreSQL triggers. A trigger function is a program defined in this form: CREATE
FUNCTION ... RETURNS TRIGGER . Creating the trigger doesn't require use of the CREATE TRIGGER command. Instead, create stream triggers using the

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 281

special PGD functions bdr.create_conflict_trigger() and bdr.create_transform_trigger() .

Once created, the trigger is visible in the catalog table pg_trigger . The stream triggers are marked as tgisinternal = true and tgenabled = 'D'
and have the name suffix '_bdrc' or '_bdrt'. The view bdr.triggers provides information on the triggers in relation to the table, the name of the procedure that's
being executed, the event that triggers it, and the trigger type.

Stream triggers aren't enabled for normal SQL processing. Because of this, the ALTER TABLE ... ENABLE TRIGGER is blocked for stream triggers in both its
specific name variant and the ALL variant. This mechanism prevents the trigger from executing as a normal SQL trigger.

These triggers execute on the downstream or target node. There's no option for them to execute on the origin node. However, you might want to consider the use of
row_filter expressions on the origin.

Also, any DML that's applied while executing a stream trigger isn't replicated to other PGD nodes and doesn't trigger the execution of standard local triggers. This is
intentional. You can use it, for example, to log changes or conflicts captured by a stream trigger into a table that is crash-safe and specific to that node. See Stream
triggers examples for a working example.

Trigger execution during Apply

Transform triggers execute first—once for each incoming change in the triggering table. These triggers fire before we attempt to locate a matching target row,
allowing a very wide range of transforms to be applied efficiently and consistently.

Next, for UPDATE and DELETE changes, we locate the target row. If there's no target row, then no further processing occurs for those change types.

We then execute any normal triggers that previously were explicitly enabled as replica triggers at table level:

We then decide whether a potential conflict exists. If so, we then call any conflict trigger that exists for that table.

Missing-column conflict resolution

Before transform triggers are executed, PostgreSQL tries to match the incoming tuple against the row-type of the target table.

Any column that exists on the input row but not on the target table triggers a conflict of type target_column_missing . Conversely, a column existing on the
target table but not in the incoming row triggers a source_column_missing conflict. The default resolutions for those two conflict types are respectively
ignore_if_null and use_default_value .

This is relevant in the context of rolling schema upgrades, for example, if the new version of the schema introduces a new column. When replicating from an old
version of the schema to a new one, the source column is missing, and the use_default_value strategy is appropriate, as it populates the newly introduced
column with the default value.

However, when replicating from a node having the new schema version to a node having the old one, the column is missing from the target table. The
ignore_if_null resolver isn't appropriate for a rolling upgrade because it breaks replication as soon as the user inserts a tuple with a non-NULL value in the

new column in any of the upgraded nodes.

In view of this example, the appropriate setting for rolling schema upgrades is to configure each node to apply the ignore resolver in case of a
target_column_missing conflict.

You can do this with the following query, which you must execute separately on each node. Replace node1 with the actual node name.

ALTERALTER TABLETABLE tablename
ENABLEENABLE REPLICA TRIGGERTRIGGER trigger_name;

SELECTSELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_column_missing', 'ignore');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 282

Data loss and divergence risk

Setting the conflict resolver to ignore can lead to data loss and cluster divergence.

Consider the following example: table t exists on nodes 1 and 2, but its column col exists only on node 1.

If the conflict resolver is set to ignore , then there can be rows on node 1 where c isn't null, for example, (pk=1, col=100) . That row is replicated to node
2, and the value in column c is discarded, for example, (pk=1) .

If column c is then added to the table on node 2, it's at first set to NULL on all existing rows, and the row considered above becomes (pk=1, col=NULL) . The
row having pk=1 is no longer identical on all nodes, and the cluster is therefore divergent.

The default ignore_if_null resolver isn't affected by this risk because any row replicated to node 2 has col=NULL .

Based on this example, we recommend running LiveCompare against the whole cluster at the end of a rolling schema upgrade where the ignore resolver was
used. This practice helps to ensure that you detect and fix any divergence.

Terminology of row-types

We use these row-types:

SOURCE_OLD is the row before update, that is, the key.
SOURCE_NEW is the new row coming from another node.
TARGET is the row that exists on the node already, that is, the conflicting row.

Conflict triggers

Conflict triggers execute when a conflict is detected by PGD. They decide what happens when the conflict occurs.

If the trigger function returns a row, the action is applied to the target.
If the trigger function returns a NULL row, the action is skipped.

For example, if the trigger is called for a DELETE , the trigger returns NULL if it wants to skip the DELETE . If you want the DELETE to proceed, then return a row
value: either SOURCE_OLD or TARGET works. When the conflicting operation is either INSERT or UPDATE , and the chosen resolution is to delete the
conflicting row, the trigger must explicitly perform the deletion and return NULL. The trigger function can perform other SQL actions as it chooses, but those
actions are only applied locally, not replicated.

When a real data conflict occurs between two or more nodes, two or more concurrent changes are occurring. When the changes are applied, the conflict resolution
occurs independently on each node. This means the conflict resolution occurs once on each node and can occur with a significant time difference between them. As
a result, communication between the multiple executions of the conflict trigger isn't possible. It's the responsibility of the author of the conflict trigger to ensure
that the trigger gives exactly the same result for all related events. Otherwise, data divergence occurs. Technical Support recommends that you formally test all
conflict triggers using the isolationtester tool supplied with PGD.

WarningWarning

You can specify multiple conflict triggers on a single table, but they must match a distinct event. That is, each conflict must match only a single
conflict trigger.
We don't recommend multiple triggers matching the same event on the same table. They might result in inconsistent behavior and will not be
allowed in a future release.

If the same conflict trigger matches more than one event, you can use the TG_OP variable in the trigger to identify the operation that produced the conflict.

By default, PGD detects conflicts by observing a change of replication origin for a row. Hence, you can call a conflict trigger even when only one change is
occurring. Since, in this case, there's no real conflict, this conflict detection mechanism can generate false-positive conflicts. The conflict trigger must handle all of
those identically.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 283

In some cases, timestamp conflict detection doesn't detect a conflict at all. For example, in a concurrent UPDATE / DELETE where the DELETE occurs just after
the UPDATE , any nodes that see first the UPDATE and then the DELETE don't see any conflict. If no conflict is seen, the conflict trigger are never called. In the
same situation but using row version conflict detection, a conflict is seen, which a conflict trigger can then handle.

The trigger function has access to additional state information as well as the data row involved in the conflict, depending on the operation type:

On INSERT , conflict triggers can access the SOURCE_NEW row from the source and TARGET row.
On UPDATE , conflict triggers can access the SOURCE_OLD and SOURCE_NEW row from the source and TARGET row.
On DELETE , conflict triggers can access the SOURCE_OLD row from the source and TARGET row.

You can use the function bdr.trigger_get_row() to retrieve SOURCE_OLD , SOURCE_NEW , or TARGET rows, if a value exists for that operation.

Changes to conflict triggers happen transactionally and are protected by global DML locks during replication of the configuration change, similarly to how some
variants of ALTER TABLE are handled.

If primary keys are updated inside a conflict trigger, it can sometimes lead to unique constraint violations errors due to a difference in timing of execution. Hence,
avoid updating primary keys in conflict triggers.

Transform triggers

These triggers are similar to conflict triggers, except they're executed for every row on the data stream against the specific table. The behavior of return values and
the exposed variables is similar, but transform triggers execute before a target row is identified, so there's no TARGET row.

You can specify multiple transform triggers on each table in PGD. Transform triggers execute in alphabetical order.

A transform trigger can filter away rows, and it can do additional operations as needed. It can alter the values of any column or set them to NULL . The return value
decides the further action taken:

If the trigger function returns a row, it's applied to the target.
If the trigger function returns a NULL row, there's no further action to perform. Unexecuted triggers never execute.
The trigger function can perform other actions as it chooses.

The trigger function has access to additional state information as well as rows involved in the conflict:

On INSERT , transform triggers can access the SOURCE_NEW row from the source.
On UPDATE , transform triggers can access the SOURCE_OLD and SOURCE_NEW row from the source.
On DELETE , transform triggers can access the SOURCE_OLD row from the source.

You can use the function bdr.trigger_get_row() to retrieve SOURCE_OLD or SOURCE_NEW rows. TARGET row isn't available, since this type of trigger
executes before such a target row is identified, if any.

Transform triggers look very similar to normal BEFORE row triggers but have these important differences:

A transform trigger gets called for every incoming change. BEFORE triggers aren't called at all for UPDATE and DELETE changes if a matching row in a
table isn't found.

Transform triggers are called before partition table routing occurs.

Transform triggers have access to the lookup key via SOURCE_OLD , which isn't available to normal SQL triggers.

Row contents

The SOURCE_NEW , SOURCE_OLD , and TARGET contents depend on the operation, REPLICA IDENTITY setting of a table, and the contents of the target table.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 284

The TARGET row is available only in conflict triggers. The TARGET row contains data only if a row was found when applying UPDATE or DELETE in the target
table. If the row isn't found, the TARGET is NULL .

Execution order

Execution order for triggers:

Transform triggers — Execute once for each incoming row on the target.
Normal triggers — Execute once per row.
Conflict triggers — Execute once per row where a conflict exists.

Stream triggers examples

A conflict trigger that provides similar behavior as the update_if_newer conflict resolver:

A conflict trigger that applies a delta change on a counter column and uses SOURCE_NEW for all other columns:

A transform trigger that logs all changes to a log table instead of applying them:

CREATECREATE OROR REPLACEREPLACE FUNCTIONFUNCTION update_if_newer_trig_func
RETURNS TRIGGERTRIGGER
LANGUAGE plpgsql
ASAS $$
BEGINBEGIN
 IFIF (bdr.trigger_get_committs('TARGET')
>>
 bdr.trigger_get_committs('SOURCE_NEW')) THENTHEN
 RETURNRETURN TARGET;
 ELSIFELSIF
 RETURNRETURN SOURCESOURCE;
 ENDEND IFIF;
ENDEND;
$$;

CREATECREATE OROR REPLACEREPLACE FUNCTIONFUNCTION delta_count_trg_func
RETURNS TRIGGERTRIGGER
LANGUAGE plpgsql
ASAS $$
DECLAREDECLARE
 DELTA bigint;
 SOURCE_OLD record;
 SOURCE_NEW record;
 TARGET
record;
BEGINBEGIN
 SOURCE_OLD :=:= bdr.trigger_get_row('SOURCE_OLD');
 SOURCE_NEW :=:= bdr.trigger_get_row('SOURCE_NEW');
 TARGET :=:=
bdr.trigger_get_row('TARGET');

 DELTA :=:= SOURCE_NEW.counter --
SOURCE_OLD.counter;
 SOURCE_NEW.counter == TARGET.counter ++
DELTA;

 RETURNRETURN
SOURCE_NEW;
ENDEND;
$$;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 285

This example shows a conflict trigger that implements trusted source conflict detection, also known as trusted site, preferred node, or Always Wins resolution. It
uses the bdr.trigger_get_origin_node_id() function to provide a solution that works with three or more nodes.

CREATECREATE OROR REPLACEREPLACE FUNCTIONFUNCTION log_change
RETURNS TRIGGERTRIGGER
LANGUAGE plpgsql
ASAS $$
DECLAREDECLARE
 SOURCE_NEW record;
 SOURCE_OLD record;
 COMMITTS
timestamptz;
BEGINBEGIN
 SOURCE_NEW :=:= bdr.trigger_get_row('SOURCE_NEW');
 SOURCE_OLD :=:= bdr.trigger_get_row('SOURCE_OLD');
 COMMITTS :=:=
bdr.trigger_get_committs('SOURCE_NEW');

 IFIF (TG_OP == 'INSERT')
THENTHEN
 INSERTINSERT INTOINTO log SELECTSELECT 'I', COMMITTS,
row_to_json(SOURCE_NEW);
 ELSIFELSIF (TG_OP == 'UPDATE')
THENTHEN
 INSERTINSERT INTOINTO log SELECTSELECT 'U', COMMITTS,
row_to_json(SOURCE_NEW);
 ELSIFELSIF (TG_OP == 'DELETE')
THENTHEN
 INSERTINSERT INTOINTO log SELECTSELECT 'D', COMMITTS,
row_to_json(SOURCE_OLD);
 ENDEND IFIF;

 RETURNRETURN NULLNULL; -- do not apply the
change
ENDEND;
$$;

CREATECREATE OROR REPLACEREPLACE FUNCTIONFUNCTION test_conflict_trigger()
RETURNS TRIGGERTRIGGER
LANGUAGE plpgsql
ASAS $$
DECLAREDECLARE
 SOURCESOURCE record;
 TARGET
record;

 TRUSTED_NODE bigint;
 SOURCE_NODE
bigint;
 TARGET_NODE
bigint;
BEGINBEGIN
 TARGET :=:=
bdr.trigger_get_row('TARGET');
 IFIF (TG_OP ==
'DELETE')
 SOURCESOURCE :=:= bdr.trigger_get_row('SOURCE_OLD');
 ELSEELSE
 SOURCESOURCE :=:= bdr.trigger_get_row('SOURCE_NEW');
 ENDEND IFIF;

 TRUSTED_NODE :=:=
current_setting('customer.trusted_node_id');

 SOURCE_NODE :=:=
bdr.trigger_get_origin_node_id('SOURCE_NEW');
 TARGET_NODE :=:=
bdr.trigger_get_origin_node_id('TARGET');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 286

26 PGD AutoPartition

PGD AutoPartition allows you to split tables into several partitions. It lets tables grow easily to large sizes using automatic partitioning management. This capability
uses features of PGD, such as low-conflict locking of creating and dropping partitions.

You can create new partitions regularly and then drop them when the data retention period expires.

PGD management is primarily accomplished by functions that can be called by SQL. All functions in PGD are exposed in the bdr schema. Unless you put it into
your search_path, you need to schema-qualify the name of each function.

Auto creation of partitions

PGD AutoPartition uses the bdr.autopartition() function to create or alter the definition of automatic range partitioning for a table. If no definition exists,
it's created. Otherwise, later executions will alter the definition.

PGD Autopartition in PGD 5 currently locks the actual table while performing new partition maintenance operations.

An ERROR is raised if the table isn't RANGE partitioned or a multi-column partition key is used.

By default, AutoPartition manages partitions globally. In other words, when a partition is created on one node, the same partition is created on all other nodes in
the cluster. Using the default makes all partitions consistent and guaranteed to be available. For this capability, AutoPartition makes use of Raft.

You can change this behavior by setting managed_locally to true . In that case, all partitions are managed locally on each node. Managing partitions locally
is useful when the partitioned table isn't a replicated table, in which case you might not need or want to have all partitions on all nodes. For example, the built-in
bdr.conflict_history table isn't a replicated table. It's managed by AutoPartition locally. Each node creates partitions for this table locally and drops them

once they're old enough.

Also consider:

You can't later change tables marked as managed_locally to be managed globally and vice versa.

Activities are performed only when the entry is marked enabled = on .

We recommend that you don't manually create or drop partitions for tables managed by AutoPartition. Doing so can make the AutoPartition metadata
inconsistent and might cause it to fail.

AutoPartition Examples

Daily partitions, keep data for one month:

 IFIF (TRUSTED_NODE == SOURCE_NODE) THENTHEN
 RETURNRETURN SOURCESOURCE;
 ELSIFELSIF (TRUSTED_NODE == TARGET_NODE) THENTHEN
 RETURNRETURN TARGET;
 ELSEELSE
 RETURNRETURN NULLNULL; -- do not apply the
change
 ENDEND IFIF;
ENDEND;
$$;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 287

Create five advance partitions when there are only two more partitions remaining. Each partition can hold 1 billion orders.

RANGE-partitioned tables

A new partition is added for every partition_increment range of values, with lower and upper bound partition_increment apart. For tables with a
partition key of type timestamp or date , the partition_increment must be a valid constant of type interval . For example, specifying 1 Day
causes a new partition to be added each day, with partition bounds that are one day apart.

If the partition column is connected to a snowflakeid , timeshard , or ksuuid sequence, you must specify the partition_increment as type
interval . Otherwise, if the partition key is integer or numeric, then the partition_increment must be a valid constant of the same datatype. For example,

specifying 1000000 causes new partitions to be added every 1 million values.

If the table has no existing partition, then the specified partition_initial_lowerbound is used as the lower bound for the first partition. If you don't specify
partition_initial_lowerbound , then the system tries to derive its value from the partition column type and the specified partition_increment . For

example, if partition_increment is specified as 1 Day , then partition_initial_lowerbound is set to CURRENT DATE. If
partition_increment is specified as 1 Hour , then partition_initial_lowerbound is set to the current hour of the current date. The bounds for

the subsequent partitions are set using the partition_increment value.

The system always tries to have a certain minimum number of advance partitions. To decide whether to create new partitions, it uses the specified
partition_autocreate_expression . This can be an expression that can be evaluated by SQL, which is evaluated every time a check is performed. For

example, for a partitioned table on column type date , if partition_autocreate_expression is specified as DATE_TRUNC('day',CURRENT_DATE) ,
partition_increment is specified as 1 Day and minimum_advance_partitions is specified as 2 , then new partitions are created until the upper

bound of the last partition is less than DATE_TRUNC('day', CURRENT_DATE) + '2 Days'::interval .

The expression is evaluated each time the system checks for new partitions.

For a partitioned table on column type integer , you can specify the partition_autocreate_expression as SELECT max(partcol) FROM
schema.partitioned_table . The system then regularly checks if the maximum value of the partitioned column is within the distance of
`minimum_advance_partitions

partition_increment of the last partition's upper bound. Create an index on the partcol so that the query runs
efficiently. If you don't specify the partition_autocreate_expression for a partition table on column type integer ,
smallint , or bigint , then the system sets it to max(partcol)`.

If the data_retention_period is set, partitions are dropped after this period. Partitions are dropped at the same time as new partitions are added, to
minimize locking. If this value isn't set, you must drop the partitions manually.

The data_retention_period parameter is supported only for timestamp (and related) based partitions. The period is calculated by considering the upper
bound of the partition. The partition is dropped if the given period expires, relative to the upper bound.

CREATECREATE TABLETABLE measurement
(
logdate date notnot nullnull,
peaktemp int,
unitsales int
) PARTITIONPARTITION BYBY RANGERANGE (logdate);

bdr.autopartition('measurement', '1 day', data_retention_period :=:= '30
days');

bdr.autopartition('Orders', '1000000000',
 partition_initial_lowerbound :=:= '0',
 minimum_advance_partitions :=:=
2,
 maximum_advance_partitions :=:=
5
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 288

Stopping automatic creation of partitions

Use bdr.drop_autopartition() to drop the autopartitioning rule for the given relation. All pending work items for the relation are deleted, and no new
work items are created.

Waiting for partition creation

Partition creation is an asynchronous process. AutoPartition provides a set of functions to wait for the partition to be created, locally or on all nodes.

Use bdr.autopartition_wait_for_partitions() to wait for the creation of partitions on the local node. The function takes the partitioned table name
and a partition key column value and waits until the partition that holds that value is created.

The function waits only for the partitions to be created locally. It doesn't guarantee that the partitions also exists on the remote nodes.

To wait for the partition to be created on all PGD nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This function
internally checks local as well as all remote nodes and waits until the partition is created everywhere.

Finding a partition

Use the bdr.autopartition_find_partition() function to find the partition for the given partition key value. If partition to hold that value doesn't exist,
then the function returns NULL. Otherwise Oid of the partition is returned.

Enabling or disabling AutoPartitioning

Use bdr.autopartition_enable() to enable AutoPartitioning on the given table. If AutoPartitioning is already enabled, then no action occurs. Similarly,
use bdr.autopartition_disable() to disable AutoPartitioning on the given table.

27 Explicit two-phase commit (2PC)

NoteNote

Two-phase commit is not available with Group Commit or CAMO. See Durability limitations.

An application can explicitly opt to use two-phase commit with PGD. See Distributed Transaction Processing: The XA Specification.

The X/Open Distributed Transaction Processing (DTP) model envisions three software components:

An application program (AP) that defines transaction boundaries and specifies actions that constitute a transaction
Resource managers (RMs, such as databases or file-access systems) that provide access to shared resources
A separate component called a transaction manager (TM) that assigns identifiers to transactions, monitors their progress, and takes responsibility for
transaction completion and for failure recovery

PGD supports explicit external 2PC using the PREPARE TRANSACTION and COMMIT PREPARED / ROLLBACK PREPARED commands. Externally, a EDB
Postgres Distributed cluster appears to be a single resource manager to the transaction manager for a single session.

When bdr.commit_scope is local , the transaction is prepared only on the local node. Once committed, changes are replicated, and PGD then applies post-
commit conflict resolution.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 289

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

Using bdr.commit_scope set to local might not seem to make sense with explicit two-phase commit. However, the option is offered to allow you to control
the tradeoff between transaction latency and robustness.

Explicit two-phase commit doesn't work with either CAMO or the global commit scope. Future releases might enable this combination.

Use

Two-phase commits with a local commit scope work exactly like standard PostgreSQL. Use the local commit scope and disable CAMO.

To start the first phase of the commit, the client must assign a global transaction id, which can be any unique string identifying the transaction:

After a successful first phase, all nodes have applied the changes and are prepared for committing the transaction. The client must then invoke the second phase
from the same node:

28 Timestamp-based snapshots

The timestamp-based snapshots allow reading data in a consistent manner by using a user-specified timestamp rather than the usual MVCC snapshot. You can use
this feature to access data on different PGD nodes at a common point in time. For example, you can compare data on multiple nodes for data-quality checking.

This feature doesn't currently work with write transactions.

Enable the use of timestamp-based snapshots using the snapshot_timestamp parameter. This parameter accepts either a timestamp value or a special value,
'current' , which represents the current timestamp (now). If snapshot_timestamp is set, queries use that timestamp to determine visibility of rows rather

than the usual MVCC semantics.

For example, the following query returns the state of the customers table at 2018-12-08 02:28:30 GMT:

Without PGD, this query works only with future timestamps or the special 'current' value, so you can't use it for historical queries.

PGD works with and improves on that feature in a multi-node environment. First, PGD makes sure that all connections to other nodes replicate any outstanding data
that was added to the database before the specified timestamp. This ensures that the timestamp-based snapshot is consistent across the whole multi-master group.
Second, PGD adds a parameter called bdr.timestamp_snapshot_keep . This parameter specifies a window of time when you can execute queries against the
recent history on that node.

You can specify any interval, but be aware that VACUUM (including autovacuum) doesn't clean dead rows that are newer than up to twice the specified interval. This
also means that transaction ids aren't freed for the same amount of time. As a result, using this can leave more bloat in user tables. Initially, we recommend 10
seconds as a typical setting, although you can change that as needed.

BEGINBEGIN;

SETSET LOCALLOCAL bdr.enable_camo == 'off';
SETSET LOCALLOCAL bdr.commit_scope ==
'local';

..... other commands
possible.....

PREPAREPREPARE TRANSACTIONTRANSACTION 'some-global-id';

COMMITCOMMIT PREPARED 'some-global-
id';

SETSET snapshot_timestamp == '2018-12-08 02:28:30
GMT';
SELECTSELECT count(**) FROMFROM customers;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 290

Once the query is accepted for execution, the query might run for longer than bdr.timestamp_snapshot_keep without problem, just as normal.

Also, information about how far the snapshots were kept doesn't survive server restart. The oldest usable timestamp for the timestamp-based snapshot is the time
of last restart of the PostgreSQL instance.

You can combine the use of bdr.timestamp_snapshot_keep with the postgres_fdw extension to get a consistent read across multiple nodes in a PGD
group. You can use this combination to run parallel queries across nodes, when used with foreign tables.

There are no limits on the number of nodes in a multi-node query when using this feature.

Use of timestamp-based snapshots doesn't increase inter-node traffic or bandwidth. Only the timestamp value is passed in addition to query data.

29 Upgrading

While PGD and Postgres are closely related, they're separate products with separate upgrade paths. This section covers how to upgrade both PGD and Postgres.

Upgrading PGD

EDB Postgres Distributed is a flexible platform. This means that your upgrade path depends largely on how you installed PGD.

Upgrading with TPAUpgrading with TPA — If you installed using TPA, you can use its automated upgrade feature to upgrade to the latest minor versions.

Upgrading manuallyUpgrading manually — If you manually installed and configured your PGD cluster, you can move a cluster between versions, both minor and major.

Upgrade pathsUpgrade paths — Several supported upgrade paths are available.

Compatibility changesCompatibility changes — If you're upgrading from PGD 3.x or 4.x to PGD 5.x or later, you need to understand the compatibility changes between versions.

Upgrading Postgres

In-place Postgres upgradesIn-place Postgres upgrades — How to use bdr_pg_upgrade to manually upgrade the Postgres version on a node, or nodes.

Rolling major version upgradesRolling major version upgrades — How to perform a major version upgrade of Postgres on a cluster deployed using TPA.

Other upgrades

Application schema upgradesApplication schema upgrades — A guide for safely upgrading your application's schema when running multiple distributed servers with PGD.

29.1 Upgrading PGD clusters with TPA

No Postgres major version upgradesNo Postgres major version upgrades

TPA doesn't currently support major version upgrades of Postgres.

To perform a major version upgrade of Postgres, see In-place Postgres major version upgrades.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 291

If you used TPA to install your cluster, you can also use TPA to upgrade it. The techniques outlined here can perform minor and major version upgrades of the PGD
software. They can also perform minor version upgrades of Postgres.

You can read more about the capabilities of TPA upgrades in Upgrading your cluster in the TPA documentation.

Always test firstAlways test first

If possible, always test upgrade processes in a QA environment first. This helps to ensure that there are no unexpected factors to take into account. TPA's
ability to reproducibly deploy a PGD configuration makes it much easier to build a test environment to work with.

Minor and major PGD upgrades

TPA automatically manages minor version upgrades of PGD.

Major version upgrades of PGD require changes to the TPA config.yml file, which contains the deployment configuration.

When upgrading to PGD 5 from previous PGD major versions, you can use tpaexec reconfigure . This command helps you make appropriate modifications to
your deployment configuration.

The reconfigure command requires settings for architecture (only PGD_Always_ON and PGD Proxy routing to run. Remember to back up your deployment
configuration before running, and use the --describe and --output options to preview the reconfiguration.

Pre-requisites

The cluster configuration directory created when TPA deployed your PGD cluster.

If performing a major version upgrade of PGD, ensure that tpaexec reconfigure was run and appropriate configuration changes were made.

Upgrading

Run:

tpaexec upgrade clustername

Where clustername is the name of the cluster and the path to the cluster configuration directory. By default, TPA upgrades each node of the cluster to the
latest minor versions of the software the nodes were configured with.

TPA's automated rolling upgrade procedure

TPA first tests the cluster and then the nodes.

Each node is then isolated from the cluster, upgraded, and returned to operation within the cluster.

TPA upgrades - step by step

Checks that all preconditions for upgrading the cluster are met.
For each instance in the cluster:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 292

https://www.enterprisedb.com/docs/tpa/latest/tpaexec-upgrade/
https://www.enterprisedb.com/docs/tpa/latest/reference/tpaexec-reconfigure/

Checks that it has the correct repositories configured.
Checks that the required Postgres packages are available in those repositories.

For each BDR node in the cluster, one at a time:
Fences the node off to ensure that pgd-proxy doesn't send any connections to it.
Stops, updates, and restarts Postgres.
Unfences the node so it can receive connections again.
Updates pgbouncer, pgd-proxy, and pgd-cli, as applicable for this node.

29.2 Upgrading PGD clusters manually

Because EDB Postgres Distributed consists of multiple software components, the upgrade strategy depends partially on the components that are being upgraded.

In general, you can upgrade the cluster with almost zero downtime by using an approach called rolling upgrade. Using this approach, nodes are upgraded one by
one, and the application connections are switched over to already upgraded nodes.

You can also stop all nodes, perform the upgrade on all nodes, and only then restart the entire cluster. This approach is the same as with a standard PostgreSQL
setup. This strategy of upgrading all nodes at the same time avoids running with mixed versions of software and therefore is the simplest. However, it incurs
downtime and we don't recommend it unless you can't perform the rolling upgrade for some reason.

To upgrade an EDB Postgres Distributed cluster:

1. Plan the upgrade.
2. Prepare for the upgrade.
3. Upgrade the server software.
4. Check and validate the upgrade.

Upgrade planning

There are broadly two ways to upgrade each node:

Upgrade nodes in place to the newer software version. See Rolling server software upgrades.
Replace nodes with ones that have the newer version installed. See Rolling upgrade using node join.

You can use both of these approaches in a rolling manner.

Rolling upgrade considerations

While the cluster is going through a rolling upgrade, mixed versions of software are running in the cluster. For example, suppose nodeA has PGD 3.7.16, while
nodeB and nodeC has 4.1.0. In this state, the replication and group management uses the protocol and features from the oldest version (3.7.16 in this example), so
any new features provided by the newer version that require changes in the protocol are disabled. Once all nodes are upgraded to the same version, the new
features are enabled.

Similarly, when a cluster with WAL-decoder-enabled nodes is going through a rolling upgrade, WAL decoder on a higher version of PGD node produces LCRs (logical
change records) with a higher pglogical version. WAL decoder on a lower version of PGD node produces LCRs with lower pglogical version. As a result, WAL senders
on a higher version of PGD nodes are not expected to use LCRs due to a mismatch in protocol versions. On a lower version of PGD nodes, WAL senders may continue
to use LCRs. Once all the PGD nodes are on the same PGD version, WAL senders use LCRs.

A rolling upgrade starts with a cluster with all nodes at a prior release. It then proceeds by upgrading one node at a time to the newer release, until all nodes are at
the newer release. There must be no more than two versions of the software running at the same time. An upgrade must be completed, with all nodes fully
upgraded, before starting another upgrade.

An upgrade process can take more time when caution is required to reduce business risk. However, we don't recommend running mixed versions of the software
indefinitely.

While you can use a rolling upgrade for upgrading a major version of the software, we don't support mixing PostgreSQL, EDB Postgres Extended, and EDB Postgres

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 293

Advanced Server in one cluster. So you can't use this approach to change the Postgres variant.

WarningWarning

Downgrades of the EDB Postgres Distributed aren't supported. They require that you manually rebuild the cluster.

Rolling server software upgrades

A rolling upgrade is where the server software upgrade is upgraded sequentially on each node in a cluster without stopping the the cluster. Each node is temporarily
stopped from partiticpating in the cluster and its server software upgraded. Once updated, it is returned to the cluster and it then catches up with the cluster's
activity during its absence.

The actual procedure depends on whether the Postgres component is being upgraded to a new major version.

During the upgrade process, you can switch the application over to a node that's currently not being upgraded to provide continuous availability of the database for
applications.

Rolling upgrade using node join

The other method to upgrade the server software is to join a new node to the cluster and later drop one of the existing nodes running the older version of the
software.

For this approach, the procedure is always the same. However, because it includes node join, a potentially large data transfer is required.

Take care not to use features that are available only in the newer Postgres version until all nodes are upgraded to the newer and same release of Postgres. This is
especially true for any new DDL syntax that was added to a newer release of Postgres.

NoteNote

bdr_init_physical makes a byte-by-byte copy of the source node so you can't use it while upgrading from one major Postgres version to another. In
fact, currently bdr_init_physical requires that even the PGD version of the source and the joining node be exactly the same. You can't use it for
rolling upgrades by way of joining a new node method. Instead, use a logical join.

Upgrading a CAMO-enabled cluster

Upgrading a CAMO-enabled cluster requires upgrading CAMO groups one by one while disabling the CAMO protection for the group being upgraded and
reconfiguring it using the new commit scope-based settings.

We recommended the following approach for upgrading two BDR nodes that constitute a CAMO pair to PGD 5.0:

Ensure bdr.enable_camo remains off for transactions on any of the two nodes, or redirect clients away from the two nodes. Removing the CAMO
pairing while attempting to use CAMO leads to errors and prevents further transactions.
Uncouple the pair by deconfiguring CAMO either by resetting bdr.camo_origin_for and bdr.camo_parter_of (when upgrading from BDR 3.7.x)
or by using bdr.remove_camo_pair (on BDR 4.x).
Upgrade the two nodes to PGD 5.0.
Create a dedicated node group for the two nodes and move them into that node group.
Create a commit scope for this node group and thus the pair of nodes to use CAMO.
Reactivate CAMO protection again by either setting a default_commit_scope or by changing the clients to explicitly set bdr.commit_scope
instead of bdr.enable_camo for their sessions or transactions.
If necessary, allow clients to connect to the CAMO protected nodes again.

Upgrade preparation

Each major release of the software contains several changes that might affect compatibility with previous releases. These might affect the Postgres configuration,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 294

deployment scripts, as well as applications using PGD. We recommend considering these changes and making any needed adjustments in advance of the upgrade.

See individual changes mentioned in the release notes and any version-specific upgrade notes.

Server software upgrade

Upgrading EDB Postgres Distributed on individual nodes happens in place. You don't need to back up and restore when upgrading the BDR extension.

BDR extension upgrade

The BDR extension upgrade process consists of a few steps.

Stop Postgres

During the upgrade of binary packages, it's usually best to stop the running Postgres server first. Doing so ensures that mixed versions don't get loaded in case of an
unexpected restart during the upgrade.

Upgrade packages

The first step in the upgrade is to install the new version of the BDR packages. This installation installs both the new binary and the extension SQL script. This step is
specific to the operating system.

Start Postgres

Once packages are upgraded, you can start the Postgres instance. The BDR extension is upgraded upon start when the new binaries detect the older version of the
extension.

Postgres upgrade

The process of in-place upgrade of Postgres depends on whether you're upgrading to new minor version of Postgres or to a new major version of Postgres.

Minor version Postgres upgrade

Upgrading to a new minor version of Postgres is similar to upgrading the BDR extension. Stopping Postgres, upgrading packages, and starting Postgres again is
typically all that's needed.

However, sometimes more steps, like reindexing, might be recommended for specific minor version upgrades. Refer to the release notes of the version of Postgres
you're upgrading to.

Major version Postgres upgrade

Upgrading to a new major version of Postgres is more complicated than upgrading to a minor version.

EDB Postgres Distributed provides a bdr_pg_upgrade command line utility, which you can use to do in-place Postgres major version upgrades.

NoteNote

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 295

When upgrading to a new major version of any software, including Postgres, the BDR extension, and others, it's always important to ensure the
compatibility of your application with the target version of the software you're upgrading.

Upgrade check and validation

After you upgrade your PGD node, you can verify the current version of the binary:

Always check your monitoring after upgrading a node to confirm that the upgraded node is working as expected.

Moving from HARP to PGD Proxy

HARP can temporarily coexist with the new connection management configuration. This means you can:

Upgrade a whole pre-5 cluster to a PGD 5 cluster.
Set up the connection routing.
Replace the HARP Proxy with PGD Proxy.
Move application connections to PGD Proxy instances.
Remove the HARP Manager from all servers.

We strongly recommend doing this as soon as possible after upgrading nodes to PGD 5. HARP isn't certified for long-term use with PGD 5.

TPA provides some useful tools for this and will eventually provide a single-command upgrade path between PGD 4 and PGD 5.

29.3 Supported PGD upgrade paths

Upgrading within version 5

You can upgrade from any version 5.x release to a later 5.x release.

Upgrading from version 4 to version 5

Upgrades from PGD 4 to PGD 5 are supported from version 4.3.0. For earlier versions, upgrade to 4.3.0 before upgrading to 5. See Upgrading within 4 for more
information.

Generally, we recommend that you upgrade to the latest version 4 release before upgrading to the latest version 5 release. After upgrading to 4.3.0 or later, the
following upgrade paths are possible.

From version To version

4.3.0 5.0.0 or later

4.3.1 5.1.0 or later

4.3.2 5.1.0 or later

4.3.3 5.1.0 or later

SELECTSELECT bdr.bdr_version();

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 296

https://www.enterprisedb.com/docs/pgd/4/upgrades/upgrade_paths/#upgrading-within-version-4

Upgrading from version 3.7 to version 5

Starting with version 3.7.23, you can upgrade directly to version 5.3.0 or later. For earlier versions, upgrade to 3.7.23 before upgrading to 5. See Upgrading within
version 3.7 for more information.

29.4 Compatibility changes

Many changes in PGD 5 aren't backward compatible with PGD 4 or PGD 3.7.

Connection routing

HARP Manager doesn't exist anymore. It's been replaced by new connection management configuration.

HARP Proxy is replaced by similarly functioning PGD Proxy, which removes any deprecated features and is configured through connection management
configuration.

Commit At Most Once

CAMO configuration is now done through commit scopes. The bdr.camo_pairs catalog and any related manipulation functions don't exist anymore. The
bdr.enable_camo GUC was removed. The synchronous_replication_availability GUC doesn't affect CAMO anymore. Use the DEGRADE ON
... TO ASYNC clause of a commit scope.

Eager All-Node Replication

The global scope no longer exists. To create scope with the same behavior, use Group Commit.

The bdr.global_commit_timeout GUC was removed. Use the ABORT ON clause for the commit scope.

Lag Control

Similarly to CAMO and Eager, Lag Control configuration was also moved to commit scopes for more flexible durability configuration.

Catalogs

SELECTSELECT
bdr.add_commit_scope(
 commit_scope_name :=:= 'eager_scope',
 origin_node_group :=:= 'top_group',
 rulerule :=:= 'ALL (top_group) GROUP COMMIT (conflict_resolution = eager, commit_decision = raft) ABORT ON (timeout
= 60s)',
 wait_for_ready :=:=
truetrue
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 297

https://www.enterprisedb.com/docs/pgd/3.7/bdr/upgrades/supported_paths/#upgrading-within-version-37

bdr.workers doesn't show worker-specific info like worker_commit_timestamp anymore.
bdr.worker_errors is deprecated and lost most of the info.
bdr.state_journal_details is deprecated and lost most of the info.
bdr.event_summary replaces bdr.worker_errors and bdr.state_journal_details with additional info like Raft role changes.

The table bdr.node_catchup_info now has the user-consumable view bdr.node_catchup_info_details , which shows info in a more friendly
way.
Witness node is no longer distinguished by the replication sets it replicates but by using the node_kind value in bdr.node_summary .
All the Raft (consensus) related tables and functions were adjusted to support multiple Raft instances (sub-group Raft).
bdr.node_pre_commit view and the underlying table was removed, as the information is no longer stored in a table.
bdr.commit_decisions view was added and replaces the bdr.node_pre_commit one.

Multiple internal autopartition tables were replaced by taskmgr ones, as the mechanism behind it was generalized.
bdr.network_monitoring view was removed along with underlying tables and functions.

Many catalogs were added and some have new columns, as described in Catalogs. These aren't breaking changes strictly speaking, but we recommend
reviewing them when upgrading.

29.5 In-place Postgres major version upgrades

You can upgrade a PGD node to a newer major version of Postgres using the command-line utility bdr_pg_upgrade.

bdr_pg_upgrade is a wrapper around the standard pg_upgrade adding PGD-specific logic to the process to ensure a smooth upgrade.

Terminology

This terminology is used when describing the upgrade process and components involved:

Postgres cluster: — The database files, both executables and data, which make up a Postgres database instance on a system when run.

Old Postgres cluster — The existing Postgres cluster to upgrade, the one from which to migrate data.

New Postgres cluster — The new Postgres cluster that data is migrated to. This Postgres cluster must be one major version ahead of the old cluster.

Precautions

Standard Postgres major version upgrade precautions apply, including the fact both Postgres clusters must meet all the requirements for pg_upgrade.

Additionally, don't use bdr_pg_upgrade if other tools are using replication slots and replication origins. Only PGD slots and origins are restored after the upgrade.

You must meet several prerequisites for bdr_pg_upgrade:

Disconnect applications using the old Postgres cluster. You can, for example, redirect them to another node in the PGD cluster.
Configure peer authentication for both Postgres clusters. bdr_pg_upgrade requires peer authentication.
The same PGD version must be installed on both clusters.
The PGD version must be 4.1.0 or above. Version 3.7.22 and later is also supported.
The new cluster must be in a shutdown state.
You must install PGD packages in the new cluster.
The new cluster must be already initialized and configured as needed to match the old cluster configuration.
Databases, tables, and other objects must not exist in the new cluster.

We also recommend having the old Postgres cluster up prior to running bdr_pg_upgrade. The CLI starts the old Postgres cluster if it's shut down.

Usage

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 298

https://www.postgresql.org/docs/current/pgupgrade.html
https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.7.

To upgrade to a newer major version of Postgres, you must first install the new version.

bdr_pg_upgrade command-line

bdr_pg_upgrade passes all parameters to pg_upgrade. Therefore, you can specify any parameters supported by pg_upgrade.

Synopsis

bdr_pg_upgrade [OPTION] ...

Options

In addition to the options for pg_upgrade, you can pass the following parameters to bdr_pg_upgrade:

Required parametersRequired parameters

Specify these parameters either in the command line or, for all but the --database parameter, in their equivalent environment variable. They're used by
bdr_pg_upgrade.

-b, --old-bindir — Old Postgres cluster bin directory.
-B, --new-bindir — New Postgres cluster bin directory.
-d, --old-datadir — Old Postgres cluster data directory.
-D, --new-datadir — New Postgres cluster data directory.
--database — PGD database name.

Optional parametersOptional parameters

These parameters are optional and are used by bdr_pg_upgrade.

-p, --old-port — Old cluster port number.
-s, --socketdir — Directory to use for postmaster sockets during upgrade.
--check — Specify to only perform checks and not modify clusters.

Other parametersOther parameters

Any other parameter that's not one of the above is passed to pg_upgrade. pg_upgrade accepts the following parameters:

-j, --jobs — Number of simultaneous processes or threads to use.
-k, --link — Use hard links instead of copying files to the new cluster.
-o, --old-options — Option to pass to old postgres command. Multiple invocations are appended.
-O, --new-options — Option to pass to new postgres command. Multiple invocations are appended.
-N, --no-sync — Don't wait for all files in the upgraded cluster to be written to disk.
-P, --new-port — New cluster port number.
-r, --retain — Retain SQL and log files even after successful completion.
-U, --username — Cluster's install user name.
--clone — Use efficient file cloning.

Environment variables

You can use these environment variables in place of command line parameters:

PGBINOLD — Old Postgres cluster bin directory.
PGBINNEW — New Postgres cluster bin directory.
PGDATAOLD — Old Postgres cluster data directory.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 299

https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.6

PGDATANEW — New Postgres cluster data directory.
PGPORTOLD — Old Postgres cluster port number.
PGSOCKETDIR — Directory to use for postmaster sockets during upgrade.

Example

Given a scenario where:

Old Postgres cluster bin directory is /usr/lib/postgresql/13/bin .
New Postgres cluster bin directory is /usr/lib/postgresql/14/bin .
Old Postgres cluster data directory is /var/lib/postgresql/13/main .
New Postgres cluster data directory is /var/lib/postgresql/14/main .
Database name is bdrdb .

You can use the following command to upgrade the cluster:

bdr_pg_upgrade \
--old-bindir /usr/lib/postgresql/13/bin \
--new-bindir /usr/lib/postgresql/14/bin \
--old-datadir /var/lib/postgresql/13/main \
--new-datadir /var/lib/postgresql/14/main \
--database bdrdb

Steps performed

These steps are performed when running bdr_pg_upgrade.

NoteNote

When --check is supplied as an argument to bdr_pg_upgrade, the CLI skips steps that modify the database.

PGD Postgres checks

Steps --check supplied

Collecting pre-upgrade new cluster control data run

Checking new cluster state is shutdown run

Checking PGD versions run

Starting old cluster (if shutdown) skip

Connecting to old cluster skip

Checking if bdr schema exists skip

Turning DDL replication off skip

Terminating connections to database. skip

Waiting for all slots to be flushed skip

Disconnecting from old cluster skip

Stopping old cluster skip

Starting old cluster with PGD disabled skip

Connecting to old cluster skip

Collecting replication origins skip

Collecting replication slots skip

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 300

Disconnecting from old cluster skip

Stopping old cluster skip

Steps --check supplied

pg_upgrade steps

Standard pg_upgrade steps are performed.

NoteNote

If supplied, --check is passed to pg_upgrade.

PGD post-upgrade steps

Steps --check supplied

Collecting old cluster control data skip

Collecting new cluster control data skip

Advancing LSN of new cluster skip

Starting new cluster with PGD disabled skip

Connecting to new cluster skip

Creating replication origin, repeated for each origin skip

Advancing replication origin, repeated for each
origin

skip

Creating replication slot, repeated for each slot skip

Stopping new cluster skip

29.6 Application schema upgrades

Similar to the upgrade of EDB Postgres Distributed, there are two approaches to upgrading the application schema. The simpler option is to stop all applications
affected, preform the schema upgrade, and restart the application upgraded to use the new schema variant. This approach imposes some downtime.

To eliminate this downtime, EDB Postgres Distributed offers useful tools to perform a rolling application schema upgrade.

The following recommendations and tips reduce the impact of the application schema upgrade on the cluster.

Rolling application schema upgrades

By default, DDL will automatically be sent to all nodes. You can control this behavior manually, as described in DDL Replication. You can use this approach to create
differences between database schemas across nodes.

PGD is designed to allow replication to continue even with minor differences between nodes. These features are designed to allow application schema migration
without downtime or to allow logical standby nodes for reporting or testing.

WarningWarning

You must manage rolling application schema upgrades outside of PGD.

Careful scripting is required to make this work correctly on production clusters. Extensive testing is advised.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 301

See Replicating between nodes with differences for details.

When one node runs DDL that adds a new table, nodes that haven't yet received the latest DDL need to handle the extra table. In view of this, the appropriate
setting for rolling schema upgrades is to configure all nodes to apply the skip resolver in case of a target_table_missing conflict. Perform this
configuration before adding tables to any node. This setting is intended to be permanent.

Execute the following query separately on each nodeseparately on each node. Replace node1 with the actual node name.

When one node runs DDL that adds a column to a table, nodes that haven't yet received the latest DDL need to handle the extra columns. In view of this, the
appropriate setting for rolling schema upgrades is to configure all nodes to apply the ignore resolver in case of a target_column_missing conflict.
Perform this before adding columns to one node. This setting is intended to be permanent.

Execute the following query separately on each nodeseparately on each node. Replace node1 with the actual node name.

When one node runs DDL that removes a column from a table, nodes that haven't yet received the latest DDL need to handle the missing column. This situation
causes a source_column_missing conflict, which uses the use_default_value resolver. Thus, columns that don't accept NULLs and don't have a
DEFAULT value require a two-step process:

1. Remove the NOT NULL constraint, or add a DEFAULT value for a column on all nodes.
2. Remove the column.

You can remove constraints in a rolling manner. There's currently no supported way for handling adding table constraints in a rolling manner, one node at a time.

When one node runs a DDL that changes the type of an existing column, depending on the existence of binary coercibility between the current type and the target
type, the operation might not rewrite the underlying table data. In that case, it's only a metadata update of the underlying column type. Rewriting a table is normally
restricted. However, in controlled DBA environments, you can change the type of a column to an automatically castable one by adopting a rolling upgrade for the
type of this column in a non-replicated environment on all the nodes, one by one. See ALTER TABLE for more details.

29.7 Performing a Postgres major version rolling upgrade on a PGD cluster built with TPA

Upgrading Postgres major versions

Upgrading a Postgres database's major version to access improved features, performance enhancements, and security updates is a common administration task.
Doing the same for a Postgres Distributed (PGD) cluster deployed with Trusted Postgres Architect (TPA) is essentially the same process but performed as a rolling
upgrade.

The rolling upgrade process allows updating individual cluster nodes to a new major Postgres version while maintaining cluster availability and operational
continuity. This approach minimizes downtime and ensures data integrity by allowing the rest of the cluster to remain operational as each node is upgraded
sequentially.

The following overview of the general instructions and worked example help to provide a smooth and controlled upgrade process.

Prepare the upgrade

To prepare for the upgrade, identify the subgroups and nodes you're trying to upgrade and note an initial upgrade order.

To do this, connect to one of the nodes using SSH and run the pgd show-nodes command:

SELECTSELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_table_missing', 'skip');

SELECTSELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_column_missing', 'ignore');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 302

The pgd show-nodes command shows you all the nodes in your PGD cluster and the subgroup to which each node belongs. Then you want to find out which
node is the write leader in each subgroup by running:

This command outputs a list of the different groups/subgroups running in your cluster and the write leader of each group. To maintain operational continuity, you
need to switch write leaders over to another node in their subgroup before you can upgrade them. To keep the number of planned switchovers to a minimum, when
upgrading a subgroup of nodes, upgrade the writer leaders last.

Even though you verified which node is the current write leader for planning purposes, the write leader of a subgroup could change to another node at any moment
for operational reasons before you upgrade that node. Therefore, you still need to verify that a node isn't the write leader just before upgrading that node.

You now have enough information to determine your upgrade order, one subgroup at a time, aiming to upgrade the identified write leader node last in each
subgroup.

Perform the upgrade on each node

NoteNote

To help prevent data loss, ensure that your databases and configuration files are backed up before starting the upgrade process.

Using the preliminary order, perform the following steps on each node while connected via SSH:

Confirm the current Postgres versionConfirm the current Postgres version

View versions from PGD by running sudo -u postgres pgd show-version .
Ensure that the expected major version is running.

Verify that the target node isn't the write leaderVerify that the target node isn't the write leader

Check whether the target node is the write leader for the group you're upgrading using sudo -u postgres pgd show-groups .
If the target node is the current write leader for the group/subgroup you're upgrading, perform a planned switchover to another node.

sudo -u postgres pgd switchover --group-name <group_name> --node-name <new_write_leader_node_name>

Stop Postgres on the target nodeStop Postgres on the target node

Stop the Postgres service on the current node by running sudo systemctl stop postgres .
The target node is no longer actively participating as a node in the cluster.

Install PGD and utilitiesInstall PGD and utilities

Install PGD and its utilities compatible with the Postgres version you're upgrading to.
sudo apt install edb-bdr<new_pgd_version_number>-pg<new_postgres_version_number> edb-bdr-utilities

Initialize the new Postgres instanceInitialize the new Postgres instance

Create a directory that will house the database files for the new version of PostgreSQL:
sudo mkdir -p /opt/postgres/datanew

Ensure that user postgres has ownership permissions (chown) to the directory.

Initialize a new PostgreSQL database cluster in the directory you just created.
This step involves using the initdb command provided by the newly installed version of PostgreSQL.
Replace <path_to_postgres_bin> with the path to the bin directory of the newly installed PostgreSQL version: sudo -u postgres
<path_to_postgres_bin>/initdb -D /opt/postgres/datanew .
You may need to run this command as the postgres user or another user with appropriate permissions.
Make sure to include the --data-checksums flag to ensure the cluster uses data checksums.

sudo -u postgres pgd show-
nodes

sudo -u postgres pgd show-
groups

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 303

Migrate configuration to the new Postgres versionMigrate configuration to the new Postgres version

Locate the following configuration files in your current PostgreSQL data directory:
postgresql.conf

The main configuration file containing settings related to the database system.

postgresql.auto.conf
Contains settings set by PostgreSQL, such as those modified by the ALTER SYSTEM command.

pg_hba.conf
Manages client authentication, specifying which users can connect to which databases from which hosts.

The entire conf.d directory (if present)
Allows for organizing configuration settings into separate files for better manageability.

Copy these files and the conf.d directory to the new data directory you created for the upgraded version of PostgreSQL.

Verify the Postgres service is inactiveVerify the Postgres service is inactive

Before proceeding, it's important to ensure that no PostgreSQL processes are active for both the old and the new data directories. This verification
step prevents any data corruption or conflicts during the upgrade process.
Use the sudo systemctl status postgres command to verify that Postgres was stopped.
If it isn't stopped, run systemctl stop postgres and verify again that it was stopped.

Swap PGDATA directories for version upgradeSwap PGDATA directories for version upgrade

Rename /opt/postgres/data to /opt/postgres/dataold and /opt/postgres/datanew to /opt/postgres/data .
This step readies your system for the next crucial phase: running pg_upgrade to finalize the PostgreSQL version transition.

Verify upgrade feasibilityVerify upgrade feasibility

The bdr_pg_upgrade tool offers a --check option designed to perform a preliminary scan of your current setup, identifying any potential issues
that could hinder the upgrade process.
You need to run this check from an upgrade directory with ownership given to user postgres , such as /home/upgrade/ , so that the upgrade
log files created by bdr_pg_upgrade can be stored.
To initiate the safety check, append the --check option to your bdr_pg_upgrade command.
This operation simulates the upgrade process without making any changes, providing insights into any compatibility issues, deprecated features, or
configuration adjustments required for a successful upgrade.
Address any warnings or errors indicated by this check to ensure an uneventful transition to the new version.

Execute the Postgres major version upgradeExecute the Postgres major version upgrade

Execute the upgrade process by running the bdr_pg_upgrade command without the --check option.
It's essential to monitor the command output for any errors or warnings that require attention.
The time the upgrade process take depends on the size of your database and the complexity of your setup.

Update the Postgres service configurationUpdate the Postgres service configuration

Update the service configuration to reflect the new PostgreSQL version by updating the version number in the postgres.service file:
sudo sed -i -e 's/<old_version_number>/<new_version_number>/g' /etc/systemd/system/postgres.service

Refresh the system's service manager to apply these changes:
sudo systemctl daemon-reload

Restart PostgresRestart Postgres

Proceed to restart the PostgreSQL service.
systemctl start postgres

Validate the new Postgres versionValidate the new Postgres version

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 304

Verify that your PostgreSQL instance is now upgraded by again running sudo -u postgres pgd show-version .

Clean up post-upgradeClean up post-upgrade

Run vacuumdb with the ANALYZE option immediately after the upgrade but before introducing a heavy production load.
Running this command minimizes the immediate performance impact, preparing the database for more accurate testing.

Remove the old version's data directory, /opt/postgres/dataold .

Reconcile the upgrade with TPA

TPA needs to continue to manage the deployment effectively after all the nodes have been upgraded. Therefore, it's necessary to reconcile the upgraded nodes with
TPA.

Follow these steps to update the configuration and redeploy the PGD cluster through TPA.

Update the Update the config.yml

Change the config.yml of the TPA-managed cluster to the new version.
cluster_vars: postgres_version: '<new_version_number>'

Use Use tpaexec to redeploy the PGD cluster with the updated to redeploy the PGD cluster with the updated config.yml

tpaexec deploy <cluster_name>

The worked example that follows shows upgrading the Postgres major version from 15 to 16 on a PGD 5 cluster deployed with TPA in detail.

Worked example

This worked example starts with a TPA-managed PGD cluster deployed using the AWS Quickstart. The cluster has three nodes: kaboom, kaolin, and kaftan, all
running Postges 15.

This example starts with kaboom.

NoteNote

Some steps of this process involve running commands as the Postgres owner. We refer to this user as postgres throughout, when appropriate. If you're
running EDB Postgres Advanced Server, substitute the postgres user with enterprisedb in all relevant commands.

Confirm the current Postgres version

SSH into kaboom to confirm the major version of Postgres is expected by running:

The output will be similar to this for your cluster:

Node BDR Version Postgres Version
---- ----------- ----------------
kaboom 5.4.0 15.6 (Debian 15.6-2EDB.buster)
kaftan 5.4.0 15.6 (Debian 15.6-2EDB.buster)
kaolin 5.4.0 15.6 (Debian 15.6-2EDB.buster)

sudo -u postgres pgd show-
version

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 305

Confirm that the Postgres version is the expected version.

Verify that the target node isn't the write leader

The cluster must be available throughout the process (that is, a rolling upgrade). There must always be an available write leader to maintain continuous cluster
availability. So, if the target node is the current write leader, you must perform a planned switchover of the write leader node before upgrading it so that a write
leader is always available.

While connected via SSH to kaboom, see which node is the current write leader of the group you're upgrading using the pgd show-groups command:

In this case, you can see that kaboom is the current write leader of the sole subgroup dc1_subgroup :

Group Group ID Type Parent Group Location Raft Routing Write Leader
----- -------- ---- ------------ -------- ---- ------- ------------
democluster 1935823863 global true false
dc1_subgroup 1302278103 data democluster dc1 true true kaboom

So you must perform a planned switchover of the write leader of dc1_subgroup to another node in the cluster.

Perform a planned switchover

Change the write leader to kaftan so kaboom's Postgres instance can be stopped:

After the switchover is successful, it's safe to stop Postgres on the target node. Of course, if kaftan is still the write leader when you come to upgrading it, you'll
need to perform another planned switchover at that time.

Stop Postgres on the target node

While connected via SSH to the target node (in this case, kaboom), stop Postgres on the node by running:

This command halts the server on kaboom. Your cluster continues running using the other two nodes.

Install PGD and utilities

Next, install the new version of Postgres (PG16) and the upgrade tool:

Initialize the new Postgres instance

Make a new data directory for the upgraded Postgres, and give the postgres user ownership of the directory:

sudo -u postgres pgd show-
groups

sudo -u postgres pgd switchover --group-name dc1_subgroup --node-name
kaftan

sudo systemctl stop
postgres

sudo apt install edb-bdr5-pg16 edb-bdr-
utilities

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 306

Then, initialize Postgres 16 in the new directory:

This command creates a PG16 data directory for configuration, /opt/postgres/datanew .

Migrate configuration to the new Postgres version

The next step copies the configuration files from the old Postgres version (PG15) to the new Postgres version's (PG16). Configuration files reside in each version's
data directory.

Copy over the postgresql.conf , postgresql.auto.conf , and pg_hba.conf files and the whole conf.d directory:

Verify the Postgres service is inactive

Although you previously stopped the Postgres service on the target node, kaboom, to verify it's stopped, run the systemctl status postgres command:

The output of the status command shows that the Postgres service has stopped running:

● postgres.service - Postgres 15 (TPA)
 Loaded: loaded (/etc/systemd/system/postgres.service; enabled; vendor preset: enabled)
 Active: inactive (dead) since Wed 2024-03-20 15:32:18 UTC; 4min 9s ago
 Main PID: 24396 (code=exited, status=0/SUCCESS)

Mar 20 15:32:18 kaboom postgres[25032]: [22-1] 2024-03-20 15:32:18 UTC
[pgdproxy@10.33.125.89(20108)/[unknown]/bdrdb:25032]: [1] FA
Mar 20 15:32:18 kaboom postgres[25033]: [22-1] 2024-03-20 15:32:18 UTC
[pgdproxy@10.33.125.89(20124)/[unknown]/bdrdb:25033]: [1] FA
Mar 20 15:32:18 kaboom postgres[25034]: [22-1] 2024-03-20 15:32:18 UTC
[pgdproxy@10.33.125.88(43534)/[unknown]/bdrdb:25034]: [1] FA
Mar 20 15:32:18 kaboom postgres[25035]: [22-1] 2024-03-20 15:32:18 UTC
[pgdproxy@10.33.125.88(43538)/[unknown]/bdrdb:25035]: [1] FA
Mar 20 15:32:18 kaboom postgres[25036]: [22-1] 2024-03-20 15:32:18 UTC
[pgdproxy@10.33.125.87(37292)/[unknown]/bdrdb:25036]: [1] FA
Mar 20 15:32:18 kaboom postgres[25037]: [22-1] 2024-03-20 15:32:18 UTC
[pgdproxy@10.33.125.87(37308)/[unknown]/bdrdb:25037]: [1] FA

sudo mkdir
/opt/postgres/datanew
sudo chown -R postgres:postgres
/opt/postgres/datanew

sudo -u postgres /usr/lib/postgresql/16/bin/initdb
\
 -D /opt/postgres/datanew
\
 -E UTF8 \
 --lc-collate==en_US.UTF-8 \
 --lc-ctype==en_US.UTF-8 \
 --data-checksums

sudo -u postgres cp /opt/postgres/data/postgresql.conf
/opt/postgres/datanew/
sudo -u postgres cp /opt/postgres/data/postgresql.auto.conf
/opt/postgres/datanew/
sudo -u postgres cp /opt/postgres/data/pg_hba.conf
/opt/postgres/datanew/
sudo -u postgres cp -r /opt/postgres/data/conf.d/
/opt/postgres/datanew/

sudo systemctl status
postgres

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 307

Mar 20 15:32:18 kaboom postgres[24398]: [24-1] 2024-03-20 15:32:18 UTC [@//:24398]: [15] LOG: checkpoint
complete: wrote 394 buffe
Mar 20 15:32:18 kaboom postgres[24396]: [22-1] 2024-03-20 15:32:18 UTC [@//:24396]: [23] LOG: database system is
shut down
Mar 20 15:32:18 kaboom systemd[1]: postgres.service: Succeeded.
Mar 20 15:32:18 kaboom systemd[1]: Stopped Postgres 15 (TPA).

Swap PGDATA directories for version upgrade

Next, swap the PG15 and PG16 data directories:

ImportantImportant

If something goes wrong at some point during the procedure, you may want to rollback/revert a node to the older major version. To do this, rename
directories again so that the current data directory, /opt/postgres/data , becomes /opt/postgres/datafailed and the old data directory,
/opt/postgres/dataold , becomes the current data directory:

This rolls back/reverts the node back to the previous major version of Postgres.

Verify upgrade feasibility

The bdr_pg_upgrade tool has a --check option, which performs a dry run of some of the upgrade process. You can use this option to ensure the upgrade
goes smoothly.

However, first, you need a directory for the files created by bdr_pg_upgrade . For this example, create an /upgrade directory in the /home directory. Then
give ownership of the directory to the user postgres.

Next, navigate to /home/upgrade and run:

The following is the output:

Performing BDR Postgres Checks

Collecting pre-upgrade new cluster control data ok
Checking new cluster state is shutdown ok
Checking BDR versions ok

sudo mv /opt/postgres/data
/opt/postgres/dataold
sudo mv /opt/postgres/datanew
/opt/postgres/data

sudo mv /opt/postgres/data
/opt/postgres/datafailed
sudo mv /opt/postgres/dataold
/opt/postgres/data

sudo mkdir /home/upgrade
sudo chown postgres:postgres /home/upgrade

sudo -u postgres /usr/bin/bdr_pg_upgrade
\
 --old-bindir /usr/lib/postgresql/15/bin/ \
 --new-bindir /usr/lib/postgresql/16/bin/ \
 --old-datadir /opt/postgres/dataold/ \
 --new-datadir /opt/postgres/data/
\
 --database bdrdb \
 --check

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 308

Passed all bdr_pg_upgrade checks, now calling pg_upgrade

Performing Consistency Checks

Checking cluster versions ok
Checking database user is the install user ok
Checking database connection settings ok
Checking for prepared transactions ok
Checking for system-defined composite types in user tables ok
Checking for reg* data types in user tables ok
Checking for contrib/isn with bigint-passing mismatch ok
Checking for presence of required libraries ok
Checking database user is the install user ok
Checking for prepared transactions ok
Checking for new cluster tablespace directories ok

*Clusters are compatible

NoteNote

If you didn't initialize Postgres 16 with checksums using the --data-checksums option, but did initialize checksums with your Postgres 15 instance,
an error tells you about the incompatibility:

Execute the Postgres major version upgrade

You're ready to run the upgrade. On the target node, run:

The following is the expected output:

Performing BDR Postgres Checks

Collecting pre-upgrade new cluster control data ok
Checking new cluster state is shutdown ok
Checking BDR versions ok
Starting old cluster (if shutdown) ok
Connecting to old cluster ok
Checking if bdr schema exists ok
Turning DDL replication off ok
Terminating connections to database ok
Disabling connections to database ok
Waiting for all slots to be flushed ok
Disconnecting from old cluster ok
Stopping old cluster ok
Starting old cluster with BDR disabled ok
Connecting to old cluster ok
Collecting replication origins ok
Collecting replication slots ok
Disconnecting from old cluster ok

old cluster uses data checksums but the new one does
not

sudo -u postgres /usr/bin/bdr_pg_upgrade
\
 --old-bindir /usr/lib/postgresql/15/bin/ \
 --new-bindir /usr/lib/postgresql/16/bin/ \
 --old-datadir /opt/postgres/dataold/ \
 --new-datadir /opt/postgres/data/
\
 --database bdrdb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 309

Stopping old cluster ok

Passed all bdr_pg_upgrade checks, now calling pg_upgrade

Performing Consistency Checks

Checking cluster versions ok
Checking database user is the install user ok
Checking database connection settings ok
Checking for prepared transactions ok
Checking for system-defined composite types in user tables ok
Checking for reg* data types in user tables ok
Checking for contrib/isn with bigint-passing mismatch ok
Creating dump of global objects ok
Creating dump of database schemas ok
Checking for presence of required libraries ok
Checking database user is the install user ok
Checking for prepared transactions ok
Checking for new cluster tablespace directories ok

If pg_upgrade fails after this point, you must re-initdb the
new cluster before continuing.

Performing Upgrade

Analyzing all rows in the new cluster ok
Freezing all rows in the new cluster ok
Deleting files from new pg_xact ok
Copying old pg_xact to new server ok
Setting oldest XID for new cluster ok
Setting next transaction ID and epoch for new cluster ok
Deleting files from new pg_multixact/offsets ok
Copying old pg_multixact/offsets to new server ok
Deleting files from new pg_multixact/members ok
Copying old pg_multixact/members to new server ok
Setting next multixact ID and offset for new cluster ok
Resetting WAL archives ok
Setting frozenxid and minmxid counters in new cluster ok
Restoring global objects in the new cluster ok
Restoring database schemas in the new cluster ok
Copying user relation files ok
Setting next OID for new cluster ok
Sync data directory to disk ok
Creating script to delete old cluster ok
Checking for extension updates notice

Your installation contains extensions that should be updated
with the ALTER EXTENSION command. The file
 update_extensions.sql
when executed by psql by the database superuser will update
these extensions.

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade.
Once you start the new server, consider running:
 /usr/pgsql-15/bin/vacuumdb --all --analyze-in-stages

Running this script will delete the old cluster's data files:
 ./delete_old_cluster.sh

pg_upgrade complete, performing BDR post-upgrade steps
--
Collecting old cluster control data ok

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 310

Collecting new cluster control data ok
Checking LSN of new cluster ok
Starting new cluster with BDR disabled ok
Connecting to new cluster ok
Creating replication origin (bdr_bdrdb_rb69_bdr2) ok
Advancing replication origin (bdr_bdrdb_rb69_bdr2, 0/1F4... ok
Creating replication origin (bdr_bdrdb_rb69_bdr1) ok
Advancing replication origin (bdr_bdrdb_rb69_bdr1, 0/1E8... ok
Creating replication slot (bdr_bdrdb_rb69_bdr1) ok
Creating replication slot (bdr_bdrdb_rb69) ok
Creating replication slot (bdr_bdrdb_rb69_bdr2) ok
Stopping new cluster

Update the Postgres service configuration

The Postgres service on the system is configured to start the old version of Postgres (PG15). You need to modify the postgres.service file to start the new
version (PG16).

You can do this using sed to replace the old version number 15 with 16 throughout the file.

After you've changed the version number, you can tell the systemd daemon to reload the configuration. On the target node, run:

Restart Postgres

Start the modified Postgres service by running:

Validate the new Postgres version

Repeating the first step, check the version of Postgres to confirm that you upgraded kaboom correctly. While still on kaboom, run:

Use the output to confirm that kaboom is running the upgraded Postgres version:

Node BDR Version Postgres Version
---- ----------- ----------------
kaboom 5.4.0 16.2 (Debian 16.2-2EDB.buster)
kaftan 5.4.0 15.6 (Debian 15.6-2EDB.buster)
kaolin 5.4.0 15.6 (Debian 15.6-2EDB.buster)

Here kaboom has been upgraded to major version 16.

Clean up post-upgrade

sudo sed -i -e 's/15/16/g'
/etc/systemd/system/postgres.service

sudo systemctl daemon-reload

sudo systemctl start
postgres

sudo -u postgres pgd show-
version

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 311

As a best practice, run a vacuum over the database at this point. When the upgrade ran, you may have noticed the post-upgrade report included:

Once you start the new server, consider running:
 /usr/lib/postgresql/16/bin/vacuumdb --all --analyze-in-stages

You can run the vacuum now. On the target node, run:

If you're sure you don't need to revert this node, you can also clean up the old data directory folder dataold :

Upgrading the target node is now complete.

Next steps

After completing the upgrade on kaboom, run the same steps on kaolin and kaftan.

If you followed along with this example and kaftan is the write leader, to ensure availability, you must perform a planned switchover to another, already upgraded
node before running the upgrade steps on kaftan.

Check Postgres versions across the cluster

After completing the upgrade on all nodes, while connected to one of the nodes, you can once again check your versions:

The output will be similar to the following:

Node BDR Version Postgres Version
---- ----------- ----------------
kaboom 5.4.0 16.2 (Debian 16.2-2EDB.buster)
kaftan 5.4.0 16.2 (Debian 16.2-2EDB.buster)
kaolin 5.4.0 16.2 (Debian 16.2-2EDB.buster)

This output shows that all the nodes are successfully upgraded to the new Postgres version 16.

Reconcile with TPA

After all the nodes are upgraded, you still need to reconcile the upgraded version of Postgres with TPA so you can continue to use TPA to manage the cluster in the
future.

To do this, return to the command line where your TPA cluster directory resides. In this worked example, the TPA cluster directory is
/home/ubuntu/democluster on the instance where you originally deployed the cluster using TPA.

After navigating to your cluster directory, use a code editor to edit config.yml and change cluster_vars: from postgres_version: '15' to
postgres_version: '16' .

Unless they were already added to your .bashrc or .bash_profile , ensure the TPA tools are accessible in your command line session by adding TPA's binary
directory to your PATH:

sudo -u postgres /usr/lib/postgresql/16/bin/vacuumdb --all --analyze-in-
stages

sudo rm -r
/opt/postgres/dataold

sudo -u postgres pgd show-
version

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 312

https://www.enterprisedb.com/docs/tpa/latest/reference/reconciling-local-changes/

Finally, redeploy the cluster:

This command applies the configuration changes to the cluster managed by TPA. If the deployment is successful, the reconciliation of the new version of Postgres
with TPA and the upgrade procedure as a whole is complete.

30 PGD reference

The reference section is a definitive listing of all functions, views, and commands available in EDB Postgres Distributed.

User visible catalogs and views

bdr.camo_decision_journal
bdr.commit_scopes
bdr.conflict_history
bdr.conflict_history_summary
bdr.consensus_kv_data
bdr.crdt_handlers
bdr.ddl_replication
bdr.depend
bdr.global_consensus_journal
bdr.global_consensus_journal_details
bdr.global_consensus_response_journal
bdr.global_lock
bdr.global_locks
bdr.group_camo_details
bdr.group_raft_details
bdr.group_replslots_details
bdr.group_subscription_summary
bdr.group_versions_details
bdr.local_consensus_snapshot
bdr.local_consensus_state
bdr.local_node
bdr.local_node_summary
bdr.local_sync_status
bdr.node
bdr.node_catchup_info
bdr.node_catchup_info_details
bdr.node_conflict_resolvers
bdr.node_group
bdr.node_group_replication_sets
bdr.node_group_summary
bdr.node_local_info
bdr.node_log_config
bdr.node_peer_progress
bdr.node_replication_rates
bdr.node_slots
bdr.node_summary
bdr.queue
bdr.replication_set
bdr.replication_set_table
bdr.replication_set_ddl
bdr.replication_sets
bdr.schema_changes

export PATH==$PATH:/opt/EDB/TPA/bin

tpaexec deploy
democluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 313

bdr.sequence_alloc
bdr.sequences
bdr.stat_activity
bdr.stat_relation
bdr.stat_subscription
bdr.subscription
bdr.subscription_summary
bdr.tables
bdr.taskmgr_work_queue
bdr.taskmgr_workitem_status
bdr.taskmgr_local_work_queue
bdr.taskmgr_local_workitem_status
bdr.trigger
bdr.triggers
bdr.workers
bdr.writers
bdr.worker_tasks

System functions

Version information functions

bdr.bdr_version
bdr.bdr_version_num

System information functions

bdr.get_relation_stats
bdr.get_subscription_stats

System and progress information parameters

bdr.local_node_id
bdr.last_committed_lsn
transaction_id
bdr.is_node_connected
bdr.is_node_ready

Consensus function

bdr.consensus_disable
bdr.consensus_enable
bdr.consensus_proto_version
bdr.consensus_snapshot_export
bdr.consensus_snapshot_import
bdr.consensus_snapshot_verify
bdr.get_consensus_status
bdr.get_raft_status
bdr.raft_leadership_transfer

Utility functions

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 314

bdr.wait_slot_confirm_lsn
bdr.wait_for_apply_queue
bdr.get_node_sub_receive_lsn
bdr.get_node_sub_apply_lsn
bdr.replicate_ddl_command
bdr.run_on_all_nodes
bdr.run_on_nodes
bdr.run_on_group
bdr.global_lock_table
bdr.wait_for_xid_progress
bdr.local_group_slot_name
bdr.node_group_type
bdr.alter_node_kind
bdr.alter_subscription_skip_changes_upto

Global advisory locks

bdr.global_advisory_lock
bdr.global_advisory_unlock

Monitoring functions

bdr.monitor_group_versions
bdr.monitor_group_raft
bdr.monitor_local_replslots
bdr.wal_sender_stats
bdr.get_decoding_worker_stat
bdr.lag_control

CAMO functions

bdr.is_camo_partner_connected
bdr.is_camo_partner_ready
bdr.get_configured_camo_partner
bdr.wait_for_camo_partner_queue
bdr.camo_transactions_resolved

bdr.logical_transaction_status

Commit Scope functions

bdr.add_commit_scope
bdr.alter_commit_scope
bdr.remove_commit_scope

PGD settings

Conflict handling

bdr.default_conflict_detection

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 315

Global sequence parameters

bdr.default_sequence_kind

DDL handling

bdr.default_replica_identity
bdr.ddl_replication
bdr.role_replication
bdr.ddl_locking
bdr.truncate_locking

Global locking

bdr.global_lock_max_locks
bdr.global_lock_timeout
bdr.global_lock_statement_timeout
bdr.global_lock_idle_timeout
bdr.predictive_checks

Node management

bdr.replay_progress_frequency
bdr.standby_slot_names

Generic replication

bdr.writers_per_subscription
bdr.max_writers_per_subscription
bdr.xact_replication
bdr.permit_unsafe_commands
bdr.batch_inserts
bdr.maximum_clock_skew
bdr.maximum_clock_skew_action
bdr.accept_connections
bdr.standby_slot_names
bdr.standby_slots_min_confirmed
bdr.writer_input_queue_size
bdr.writer_output_queue_size
bdr.min_worker_backoff_delay

CRDTs

bdr.crdt_raw_value

Commit Scope

bdr.commit_scope

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 316

Commit At Most Once

bdr.camo_local_mode_delay
bdr.camo_enable_client_warnings

Transaction streaming

bdr.default_streaming_mode

Lag Control

bdr.lag_control_max_commit_delay
bdr.lag_control_max_lag_size
bdr.lag_control_max_lag_time
bdr.lag_control_min_conforming_nodes
bdr.lag_control_commit_delay_adjust
bdr.lag_control_sample_interval
bdr.lag_control_commit_delay_start

Timestamp-based snapshots

bdr.timestamp_snapshot_keep

Monitoring and logging

bdr.debug_level
bdr.trace_level
bdr.track_subscription_apply
bdr.track_relation_apply
bdr.track_apply_lock_timing

Decoding Worker

bdr.enable_wal_decoder
bdr.receive_lcr
bdr.lcr_cleanup_interval

Connectivity settings

bdr.global_connection_timeout
bdr.global_keepalives
bdr.global_keepalives_idle
bdr.global_keepalives_interval
bdr.global_keepalives_count
bdr.global_tcp_user_timeout

Internal settings - Raft timeouts

bdr.raft_global_election_timeout

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 317

bdr.raft_local_election_timeout
bdr.raft_response_timeout

Internal settings - Other Raft values

bdr.raft_keep_min_entries
bdr.raft_log_min_apply_duration
bdr.raft_log_min_message_duration
bdr.raft_group_max_connections

Internal settings - Other values

bdr.backwards_compatibility
bdr.track_replication_estimates
bdr.lag_tracker_apply_rate_weight

Node management

List of node states
Node-management commands

bdr_init_physical

Node management interfaces

bdr.alter_node_group_config
bdr.alter_node_group_option
bdr.alter_node_interface
bdr.alter_node_option
bdr.alter_subscription_enable
bdr.alter_subscription_disable
bdr.create_node
bdr.create_node_group
bdr.join_node_group
bdr.part_node
bdr.promote_node
bdr.switch_node_group
bdr.wait_for_join_completion

Routing functions

bdr.create_proxy
bdr.alter_proxy_option
bdr.drop_proxy
bdr.routing_leadership_transfer

Commit scopes

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 318

Commit scope syntax
Commit scope groups

ANY
ANY NOT
MAJORITY
MAJORITY NOT
ALL
ALL NOT

Confirmation level
ON received
ON replicated
ON durable
ON visible

Commit Scope kinds
GROUP COMMIT

GROUP COMMIT parameters
ABORT ON parameters
transaction_tracking settings
conflict_resolution settings
commit_decision settings

CAMO
Degrade On parameters

LAG CONTROL
LAG CONTROL parameters

SYNCHRONOUS_COMMIT

Replication set management

bdr.create_replication_set
bdr.alter_replication_set
bdr.drop_replication_set
bdr.alter_node_replication_sets

Replication set membership

bdr.replication_set_add_table
bdr.replication_set_remove_table

DDL replication filtering

bdr.replication_set_add_ddl_filter
bdr.replication_set_remove_ddl_filter

Testing and tuning commands

pgd_bench

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 319

Global sequence management interfaces

Sequence functions

bdr.alter_sequence_set_kind
bdr.extract_timestamp_from_snowflakeid
bdr.extract_nodeid_from_snowflakeid
bdr.extract_localseqid_from_snowflakeid
bdr.timestamp_to_snowflakeid
bdr.extract_timestamp_from_timeshard
bdr.extract_nodeid_from_timeshard
bdr.extract_localseqid_from_timeshard
bdr.timestamp_to_timeshard

KSUUID v2 Functions

bdr.gen_ksuuid_v2
bdr.ksuuid_v2_cmp
bdr.extract_timestamp_from_ksuuid_v2

KSUUID v1 functions

bdr.gen_ksuuid
bdr.uuid_v1_cmp
bdr.extract_timestamp_from_ksuuid

Autopartition

bdr.autopartition
bdr.drop_autopartition
bdr.autopartition_wait_for_partitions
bdr.autopartition_wait_for_partitions_on_all_nodes
bdr.autopartition_find_partition
bdr.autopartition_enable
bdr.autopartition_disable

Internal functions
bdr.autopartition_create_partition
bdr.autopartition_drop_partition

Stream triggers reference

Stream triggers manipulation interfaces

bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 320

Stream triggers row functions

bdr.trigger_get_row
bdr.trigger_get_committs
bdr.trigger_get_xid
bdr.trigger_get_type
bdr.trigger_get_conflict_type
bdr.trigger_get_origin_node_id
bdr.ri_fkey_on_del_trigger

Stream triggers row variables

TG_NAME
TG_WHEN
TG_LEVEL
TG_OP
TG_RELID
TG_TABLE_NAME
TG_TABLE_SCHEMA
TG_NARGS
TG_ARGV[]

Internal catalogs and views

bdr.ddl_epoch
bdr.event_history
bdr.event_summary
bdr.node_config
bdr.node_group_config
bdr.node_group_routing_config_summary
bdr.node_group_routing_info
bdr.node_group_routing_summary
bdr.node_routing_config_summary
bdr.proxy_config
bdr.proxy_config_summary
bdr.sequence_kind

Internal system functions

General internal functions

bdr.bdr_get_commit_decisions
bdr.bdr_track_commit_decision
bdr.consensus_kv_fetch
bdr.consensus_kv_store
bdr.decode_message_payload
bdr.decode_message_response_payload
bdr.difference_fix_origin_create
bdr.difference_fix_session_reset
bdr.difference_fix_session_setup
bdr.difference_fix_xact_set_avoid_conflict
bdr.drop_node
bdr.get_global_locks

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 321

bdr.get_node_conflict_resolvers
bdr.get_slot_flush_timestamp
bdr.internal_alter_sequence_set_kind
bdr.internal_replication_set_add_table
bdr.internal_replication_set_remove_table
bdr.internal_submit_join_request
bdr.isolation_test_session_is_blocked
bdr.local_node_info
bdr.msgb_connect
bdr.msgb_deliver_message
bdr.node_catchup_state_name
bdr.node_kind_name
bdr.peer_state_name
bdr.pg_xact_origin
bdr.request_replay_progress_update
bdr.reset_relation_stats
bdr.reset_subscription_stats
bdr.resynchronize_table_from_node
bdr.seq_currval
bdr.seq_lastval
bdr.seq_nextval
bdr.show_subscription_status
bdr.show_workers
bdr.show_writers

Task Manager Functions

bdr.taskmgr_set_leader
bdr.taskmgr_get_last_completed_workitem
bdr.taskmgr_work_queue_check_status

30.1 User visible catalogs and views

Catalogs and views are presented here in alphabetical order.

bdr.camo_decision_journal

A persistent journal of decisions resolved by a CAMO partner node after a failover, in case bdr.logical_transaction_status was invoked. Unlike
bdr.node_pre_commit , this doesn't cover transactions processed under normal operational conditions (i.e., both nodes of a CAMO pair are running and

connected). Entries in this journal aren't ever cleaned up automatically. This is a diagnostic tool that the system doesn't depend on.

bdr.camo_decision_journal columns

Name Type Description

origin_node_id oid OID of the node where the transaction
executed

origin_xid oid Transaction ID on the remote origin node

decision char 'c' for commit, 'a' for abort

decision_ts timestamptz Decision time

bdr.commit_scopes

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 322

Catalog storing all possible commit scopes that you can use for bdr.commit_scope to enable Group Commit.

bdr.commit_scopes columns

Name Type Description

commit_scope_id oid ID of the scope to be referenced

commit_scope_name name Name of the scope to be referenced

commit_scope_origin_node_group oid Node group for which the rule applies, referenced by ID

sync_scope_rule text Definition of the scope

bdr.conflict_history

This table is the default table where conflicts are logged. The table is RANGE partitioned on column local_time and is managed by Autopartition. The default
data retention period is 30 days.

Access to this table is possible by any table owner, who can see all conflicts for the tables they own, restricted by row-level security.

For details, see Logging conflicts to a table.

bdr.conflict_history columns

Name Type Description

sub_id oid Which subscription produced this conflict; can be joined to bdr.subscription table

origin_node_id oid The oid (as seen in the pg_replication_origin catalog) of the node that produced the conflicting change

local_xid xid Local transaction of the replication process at the time of conflict

local_lsn pg_lsn Local LSN at the time of conflict

local_time timestamp with time
zone

Local time of the conflict

remote_xid xid Transaction that produced the conflicting change on the remote node (an origin)

remote_change_nr oid The index of the change within its transaction

remote_commit_lsn pg_lsn Commit LSN of the transaction which produced the conflicting change on the remote node (an origin)

remote_commit_time timestamp with time
zone

Commit timestamp of the transaction that produced the conflicting change on the remote node (an
origin)

conflict_type text Detected type of the conflict

conflict_resolution text Conflict resolution chosen

conflict_index regclass Conflicting index (valid only if the index wasn't dropped since)

reloid oid Conflicting relation (valid only if the index wasn't dropped since)

nspname text Name of the schema for the relation on which the conflict has occurred at the time of conflict (doesn't
follow renames)

relname text Name of the relation on which the conflict has occurred at the time of conflict (does not follow renames)

key_tuple json Json representation of the key used for matching the row

remote_tuple json Json representation of an incoming conflicting row

local_tuple json Json representation of the local conflicting row

apply_tuple json Json representation of the resulting (the one that has been applied) row

local_tuple_xmin xid Transaction that produced the local conflicting row (if local_tuple is set and the row isn't frozen)

local_tuple_node_id oid Node that produced the local conflicting row (if local_tuple is set and the row isn't frozen)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 323

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

local_tuple_commit_time timestamp with time
zone

Last known change timestamp of the local conflicting row (if local_tuple is set and the row isn't
frozen)

Name Type Description

bdr.conflict_history_summary

A view containing user-readable details on row conflict.

bdr.conflict_history_summary columns

Name Type Description

nspname text Name of the schema

relname text Name of the table

origin_node_id oid The oid (as seen in the pg_replication_origin catalog) of the node that produced the conflicting
change

remote_commit_lsn pg_lsn Commit LSN of the transaction which produced the conflicting change on the remote node (an origin)

remote_change_nr oid The index of the change within its transaction

local_time timestamp with time
zone

Local time of the conflict

local_tuple_commit_time timestamp with time
zone

Time of local commit

remote_commit_time timestamp with time
zone

Time of remote commit

conflict_type text Type of conflict

conflict_resolution text Resolution adopted

bdr.consensus_kv_data

A persistent storage for the internal Raft-based KV store used by bdr.consensus_kv_store() and bdr.consensus_kv_fetch() interfaces.

bdr.consensus_kv_data Columns

Name Type Description

kv_key text Unique key

kv_val json Arbitrary value in json format

kv_create_ts timestamptz Last write timestamp

kv_ttl int Time to live for the value in milliseconds

kv_expire_ts timestamptz Expiration timestamp (kv_create_ts + kv_ttl)

bdr.crdt_handlers

This table lists merge ("handlers") functions for all CRDT data types.

bdr.crdt_handlers Columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 324

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

Name Type Description

crdt_type_id regtype CRDT data type ID

crdt_merge_id regproc Merge function for this data
type

bdr.ddl_replication

This view lists DDL replication configuration as set up by current DDL filters.

bdr.ddl_replication columns

Name Type Description

set_ddl_name name Name of DDL filter

set_ddl_tag text The command tags it applies on (regular expression)

set_ddl_role text The roles it applies to (regular expression)

set_name name Name of the replication set for which this filter is
defined

bdr.depend

This table tracks internal object dependencies inside PGD catalogs.

bdr.global_consensus_journal

This catalog table logs all the Raft messages that were sent while managing global consensus.

As for the bdr.global_consensus_response_journal catalog, the payload is stored in a binary encoded format, which can be decoded with the
bdr.decode_message_payload() function. See the bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_journal columns

Name Type Description

log_index int8 ID of the journal entry

term int8 Raft term

origin oid ID of node where the request
originated

req_id int8 ID for the request

req_payload bytea Payload for the request

trace_context bytea Trace context for the request

bdr.global_consensus_journal_details

This view presents Raft messages that were sent and the corresponding responses, using the bdr.decode_message_payload() function to decode their
payloads.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 325

bdr.global_consensus_journal_details columns

Name Type Description

node_group_name name Name of the node group

log_index int8 ID of the journal entry

term int8 Raft term

request_id int8 ID of the request

origin_id oid ID of the node where the request originated

req_payload bytea Payload of the request

origin_node_name name Name of the node where the request originated

message_type_no oid ID of the PGD message type for the request

message_type text Name of the PGD message type for the request

message_payload text PGD message payload for the request

response_message_type_no oid ID of the PGD message type for the response

response_message_type text Name of the PGD message type for the response

response_payload text PGD message payload for the response

response_errcode_no text SQLSTATE for the response

response_errcode text Error code for the response

response_message text Error message for the response

bdr.global_consensus_response_journal

This catalog table collects all the responses to the Raft messages that were received while managing global consensus.

As for the bdr.global_consensus_journal catalog, the payload is stored in a binary-encoded format, which can be decoded with the
bdr.decode_message_payload() function. See the bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_response_journal columns

Name Type Description

log_index int8 ID of the journal entry

res_status oid Status code for the response

res_payload bytea Payload for the response

trace_context bytea Trace context for the response

bdr.global_lock

This catalog table stores the information needed for recovering the global lock state on server restart.

For monitoring usage, the bdr.global_locks view is preferable because the visible rows in bdr.global_lock don't necessarily reflect all global locking
activity.

Don't modify the contents of this table. It is an important PGD catalog.

bdr.global_lock columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 326

Name Type Description

ddl_epoch int8 DDL epoch for the lock

origin_node_id oid OID of the node where the global lock has originated

lock_type oid Type of the lock (DDL or DML)

nspname name Schema name for the locked relation

relname name Relation name for the locked relation

groupid oid OID of the top level group (for Advisory locks)

key1 integer First 32-bit key or lower order 32-bits of 64-bit key (for advisory locks)

key2 integer Second 32-bit key or higher order 32-bits of 64-bit key (for advisory
locks)

key_is_bigint boolean True if 64-bit integer key is used (for advisory locks)

bdr.global_locks

A view containing active global locks on this node. The bdr.global_locks view exposes PGD's shared-memory lock state tracking, giving administrators
greater insight into PGD's global locking activity and progress.

See Monitoring global locks for more information about global locking.

bdr.global_locks columns

Name Type Description

origin_node_id oid The OID of the node where the global lock has originated

origin_node_name name Name of the node where the global lock has originated

lock_type text Type of the lock (DDL or DML)

relation text Locked relation name (for DML locks) or keys (for advisory locks)

pid int4 PID of the process holding the lock

acquire_stage text Internal state of the lock acquisition process

waiters int4 List of backends waiting for the same global lock

global_lock_request_time timestamptz Time this global lock acquire was initiated by origin node

local_lock_request_time timestamptz Time the local node started trying to acquire the local lock

last_state_change_time timestamptz Time acquire_stage last changed

Column details:

relation : For DML locks, relation shows the relation on which the DML lock is acquired. For global advisory locks, relation column actually
shows the two 32-bit integers or one 64-bit integer on which the lock is acquired.

origin_node_id and origin_node_name : If these are the same as the local node's ID and name, then the local node is the initiator of the global DDL
lock, i.e., it is the node running the acquiring transaction. If these fields specify a different node, then the local node is instead trying to acquire its local DDL
lock to satisfy a global DDL lock request from a remote node.

pid : The process ID of the process that requested the global DDL lock, if the local node is the requesting node. Null on other nodes. Query the origin node to
determine the locker pid.

global_lock_request_time : The timestamp at which the global-lock request initiator started the process of acquiring a global lock. Can be null if
unknown on the current node. This time is stamped at the beginning of the DDL lock request and includes the time taken for DDL epoch management and any
required flushes of pending-replication queues. Currently only known on origin node.

local_lock_request_time : The timestamp at which the local node started trying to acquire the local lock for this global lock. This includes the time
taken for the heavyweight session lock acquire but doesn't include any time taken on DDL epochs or queue flushing. If the lock is reacquired after local node

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 327

restart, it becomes the node restart time.

last_state_change_time : The timestamp at which the bdr.global_locks.acquire_stage field last changed for this global lock entry.

bdr.group_camo_details

Uses bdr.run_on_all_nodes to gather CAMO-related information from all nodes.

bdr.group_camo_details columns

Name Type Description

node_id text Internal node ID

node_name text Name of the node

camo_partner text Node name of the camo partner

is_camo_partner_connected text Connection status

is_camo_partner_ready text Readiness status

camo_transactions_resolved text Are there any pending and unresolved CAMO transactions

apply_lsn text Latest position reported as replayed (visible)

receive_lsn text Latest LSN of any change or message received (can go backwards in case of restarts)

apply_queue_size text Bytes difference between apply_lsn and receive_lsn

bdr.group_raft_details

Uses bdr.run_on_all_nodes to gather Raft Consensus status from all nodes.

bdr.group_raft_details columns

Name Type Description

node_id oid Internal node ID

node_name name Name of the node

node_group_name name Name of the group is part of

state text Raft worker state on the node

leader_id oid Node id of the RAFT_LEADER

current_term int Raft election internal ID

commit_index int Raft snapshot internal ID

nodes int Number of nodes accessible

voting_nodes int Number of nodes voting

protocol_version int Protocol version for this node

bdr.group_replslots_details

Uses bdr.run_on_all_nodes to gather PGD slot information from all nodes.

bdr.group_replslots_details columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 328

Name Type Description

node_group_name text Name of the PGD group

origin_name text Name of the origin node

target_name text Name of the target node

slot_name text Slot name on the origin node used by this subscription

active text Is the slot active (does it have a connection attached to it)

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position

replay_lag_byte int8 Bytes difference between replay_lsn and current WAL write position

bdr.group_subscription_summary

Uses bdr.run_on_all_nodes to gather subscription status from all nodes.

bdr.group_subscription_summary columns

Name Type Description

origin_node_name text Name of the origin of the subscription

target_node_name text Name of the target of the subscription

last_xact_replay_timestamp text Timestamp of the last replayed transaction

sub_lag_seconds text Lag between now and last_xact_replay_timestamp

bdr.group_versions_details

Uses bdr.run_on_all_nodes to gather PGD information from all nodes.

bdr.group_versions_details columns

Name Type Description

node_id oid Internal node ID

node_name name Name of the node

postgres_version text PostgreSQL version on the node

bdr_version text PGD version on the node

bdr.local_consensus_snapshot

This catalog table contains consensus snapshots created or received by the local node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 329

bdr.local_consensus_snapshot columns

Name Type Description

log_index int8 ID of the journal entry

log_term int8 Raft term

snapshot bytea Raft snapshot data

bdr.local_consensus_state

This catalog table stores the current state of Raft on the local node.

bdr.local_consensus_state columns

Name Type Description

node_id oid ID of the node

current_term int8 Raft term

apply_index int8 Raft apply index

voted_for oid Vote cast by this node in this term

last_known_leader oid node_id of last known Raft leader

bdr.local_node

This table identifies the local node in the current database of the current Postgres instance.

bdr.local_node columns

Name Type Description

node_id oid ID of the node

pub_repsets text[] Published replication sets

sub_repsets text[] Subscribed replication sets

bdr.local_node_summary

A view containing the same information as bdr.node_summary (plus pub_repsets and sub_repsets), but only for the local node.

bdr.local_sync_status

Information about status of either subscription or table synchronization process.

bdr.local_sync_status columns

Name Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 330

sync_kind char The kind of synchronization done

sync_subid oid ID of subscription doing the synchronization

sync_nspname name Schema name of the synchronized table (if any)

sync_relname name Name of the synchronized table (if any)

sync_status char Current state of the synchronization

sync_remote_relid oid ID of the synchronized table (if any) on the upstream

sync_end_lsn pg_lsn Position at which the synchronization state last changed

Name Type Description

bdr.node

This table lists all the PGD nodes in the cluster.

The view bdr.node_summary provides a human-readable version of most of the columns from bdr.node .

bdr.node columns

Name Type Description

node_id oid ID of the node

node_name name Name of the node

node_group_id oid ID of the node group

source_node_id oid ID of the source node

synchronize_structure "char" Schema synchronization done during the join

node_state oid Consistent state of the node

target_state oid State that the node is trying to reach (during join or promotion)

seq_id int4 Sequence identifier of the node used for generating unique sequence numbers

dbname name Database name of the node

node_dsn char Connection string for the node

proto_version_ranges int[] Supported protocol version ranges by the node

generation smallint A counter incremented when a node joins with the same name as a previous node

node_kind oid The ID of the node kind

node_join_finished boolean Check if the join is finished

bdr.node_catchup_info

This catalog table records relevant catchup information on each node, either if it is related to the join or part procedure.

bdr.node_catchup_info columns

Name Type Description

node_id oid ID of the node

node_source_id oid ID of the node used as source for the data

slot_name name Slot used for this source

min_node_lsn pg_lsn Minimum LSN at which the node can switch to direct replay from a peer node

catchup_state oid Status code of the catchup state

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 331

origin_node_id oid ID of the node from which we want transactions

Name Type Description

If a node(node_id) needs missing data from a parting node(origin_node_id), it can get it from a node that already has it(node_source_id) by forwarding. The records
in this table persists until the node(node_id) is a member of the EDB Postgres Distributed cluster.

bdr.node_catchup_info_details

A view of bdr.node_catchup_info catalog which shows info in more friendly way

bdr.node_conflict_resolvers

Currently configured conflict resolution for all known conflict types.

bdr.node_conflict_resolvers columns

Name Type Description

conflict_type text Type of the conflict

conflict_resolver text Resolver used for this conflict type

bdr.node_group

This catalog table lists all the PGD node groups. See also bdr.node_group_summary for a view containing user-readable details.

bdr.node_group columns

Name Type Description

node_group_id oid ID of the node group

node_group_name name Name of the node group

node_group_default_repset oid Default replication set for this node group

node_group_default_repset_ext oid Default replication set for this node group

node_group_parent_id oid ID of parent group (0 if this is a root group)

node_group_flags int The group flags

node_group_uuid uuid The uuid of the group

node_group_apply_delay interval How long a subscriber waits before applying changes from the provider

node_group_check_constraints bool Whether the apply process checks constraints when applying data

node_group_num_writers int Number of writers to use for subscriptions backing this node group

node_group_enable_wal_decoder bool Whether the group has enable_wal_decoder set

node_group_streaming_mode char Transaction streaming setting: 'O' - off, 'F' - file, 'W' - writer, 'A' - auto, 'D' - default

node_group_default_commit_scope oid ID of the node group's default commit scope

node_group_location char Name of the location associated with the node group

node_group_enable_proxy_routing char Whether the node group allows routing from pgd-proxy

node_group_enable_raft bool Whether the node group allows Raft Consensus

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 332

bdr.node_group_replication_sets

A view showing default replication sets create for PGD groups. See also bdr.replication_sets .

bdr.node_group_replication_sets columns

Name Type Description

node_group_name name Name of the PGD group

def_repset name Name of the default repset

def_repset_ops text[] Actions replicated by the default repset

def_repset_ext name Name of the default "external" repset (usually same as def_repset)

def_repset_ext_ops text[] Actions replicated by the default "external" repset (usually same as def_repset_ops)

bdr.node_group_summary

A view containing user-readable details about node groups. See also bdr.node_group .

bdr.node_group_summary columns

Name Type Description

node_group_name name Name of the node group

default_repset name Default replication set for this node group

parent_group_name name Name of parent group (NULL if this is a root group)

node_group_type text Type of the node group (one of "global", "data", "shard" or "subscriber-only")

apply_delay interval How long a subscriber waits before applying changes from the provider

check_constraints boolean Whether the apply process checks constraints when applying data

num_writers integer Number of writers to use for subscriptions backing this node group

enable_wal_decoder boolean Whether the group has enable_wal_decoder set

streaming_mode text Transaction streaming setting: "off", "file", "writer", "auto" or "default"

default_commit_scope name Name of the node group's default commit scope

location name Name of the location associated with the node group

enable_proxy_routing boolean Whether the node group allows routing from pgd-proxy

enable_raft boolean Whether the node group allows Raft Consensus

route_writer_max_lag bigint Maximum write lag accepted

route_reader_max_lag bigint Maximum read lag accepted

route_writer_wait_flush boolean Switch if we need to wait for the flush

bdr.node_local_info

A catalog table used to store per-node configuration that's specific to the local node (as opposed to global view of per-node configuration).

bdr.node_local_info columns

Name Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 333

node_id oid The OID of the node (including the local node)

applied_state oid Internal ID of the node state

ddl_epoch int8 Last epoch number processed by the node

slot_name name Name of the slot used to connect to that node (NULL for the local node)

Name Type Description

bdr.node_log_config

A catalog view that stores information on the conflict logging configurations.

bdr.node_log_config columns

Name Description

log_name Name of the logging configuration

log_to_file Whether it logs to the server log file

log_to_table Whether it logs to a table, and which table is the target

log_conflict_type Which conflict types it logs, if NULL means all

log_conflict_res Which conflict resolutions it logs, if NULL means all

bdr.node_peer_progress

Catalog used to keep track of every node's progress in the replication stream. Every node in the cluster regularly broadcasts its progress every
bdr.replay_progress_frequency milliseconds to all other nodes (default is 60000 ms, i.e., 1 minute). Expect N * (N-1) rows in this relation.

You might be more interested in the bdr.node_slots view for monitoring purposes. See also Monitoring.

bdr.node_peer_progress columns

Name Type Description

node_id oid The OID of the originating node that reported this position info

peer_node_id oid The OID of the node's peer (remote node) for which this position info was reported

last_update_sent_time timestamptz The time at which the report was sent by the originating node

last_update_recv_time timestamptz The time at which the report was received by the local server

last_update_node_lsn pg_lsn LSN on the originating node at the time of the report

peer_position pg_lsn Latest LSN of the node's peer seen by the originating node

peer_replay_time timestamptz Latest replay time of peer seen by the reporting node

last_update_horizon_xid oid Internal resolution horizon: all lower xids are known resolved on the reporting node

last_update_horizon_lsn pg_lsn Internal resolution horizon: same in terms of an LSN of the reporting node

bdr.node_replication_rates

This view contains information about outgoing replication activity from a given node.

bdr.node_replication_rates columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 334

Column Type Description

peer_node_id oid The OID of node's peer (remote node) for which this info was reported

target_name name Name of the target peer node

sent_lsn pg_lsn Latest sent position

replay_lsn pg_lsn Latest position reported as replayed (visible)

replay_lag interval Approximate lag time for reported replay

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL write position on origin

replay_lag_size text Human-readable bytes difference between replay_lsn and current WAL write position

apply_rate bigint LSNs being applied per second at the peer node

catchup_interval interval Approximate time required for the peer node to catch up to all the changes that are yet to be
applied

NoteNote

The replay_lag is set immediately to zero after reconnect. As a workaround, use replay_lag_bytes , replay_lag_size , or
catchup_interval .

bdr.node_slots

This view contains information about replication slots used in the current database by PGD.

See Monitoring outgoing replication for guidance on the use and interpretation of this view's fields.

bdr.node_slots columns

Name Type Description

target_dbname name Database name on the target node

node_group_name name Name of the PGD group

node_group_id oid The OID of the PGD group

origin_name name Name of the origin node

target_name name Name of the target node

origin_id oid The OID of the origin node

target_id oid The OID of the target node

local_slot_name name Name of the replication slot according to PGD

slot_name name Name of the slot according to Postgres (same as above)

is_group_slot boolean True if the slot is the node-group crash recovery slot for this node (see ["Group Replication Slot"](nodes#Group
Replication Slot))

is_decoder_slot boolean Is this slot used by the decoding worker feature

plugin name Logical decoding plugin using this slot (should be pglogical_output or bdr)

slot_type text Type of the slot (should be logical)

datoid oid The OID of the current database

database name Name of the current database

temporary bool Is the slot temporary

active bool Is the slot active (does it have a connection attached to it)

active_pid int4 The PID of the process attached to the slot

xmin xid The XID needed by the slot

catalog_xmin xid The catalog XID needed by the slot

restart_lsn pg_lsn LSN at which the slot can restart decoding

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 335

confirmed_flush_lsn pg_lsn Latest confirmed replicated position

usesysid oid sysid of the user the replication session is running as

usename name username of the user the replication session is running as

application_name text Application name of the client connection (used by synchronous_standby_names)

client_addr inet IP address of the client connection

client_hostname text Hostname of the client connection

client_port int4 Port of the client connection

backend_start timestamptz When the connection started

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline

sent_lsn pg_lsn Latest sent position

write_lsn pg_lsn Latest position reported as written

flush_lsn pg_lsn Latest position reported as flushed to disk

replay_lsn pg_lsn Latest position reported as replayed (visible)

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL write position

sent_lag_size text Human-readable bytes difference between sent_lsn and current WAL write position

write_lag_size text Human-readable bytes difference between write_lsn and current WAL write position

flush_lag_size text Human-readable bytes difference between flush_lsn and current WAL write position

replay_lag_size text Human-readable bytes difference between replay_lsn and current WAL write position

Name Type Description

NoteNote

The replay_lag is set immediately to zero after reconnect. As a workaround, use replay_lag_bytes or replay_lag_size .

bdr.node_summary

This view contains summary information about all PGD nodes known to the local node.

bdr.node_summary columns

Name Type Description

node_name name Name of the node

node_group_name name Name of the PGD group the node is part of

interface_connstr text Connection string to the node

peer_state_name text Consistent state of the node in human readable form

peer_target_state_name text State that the node is trying to reach (during join or promotion)

node_seq_id int4 Sequence identifier of the node used for generating unique sequence numbers

node_local_dbname name Database name of the node

node_id oid The OID of the node

node_group_id oid The OID of the PGD node group

node_kind_name oid Node kind name

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 336

bdr.queue

This table stores the historical record of replicated DDL statements.

bdr.queue columns

Name Type Description

queued_at timestamptz When was the statement queued

role name Which role has executed the statement

replication_sets text[] Which replication sets was the statement published to

message_type char

Type of a message. Possible values:
A - Table sync
D - DDL
S - Sequence
T - Truncate
Q - SQL statement

message json Payload of the message needed for replication of the statement

bdr.replication_set

A table that stores replication set configuration. For user queries, we recommend instead checking the bdr.replication_sets view.

bdr.replication_set columns

Name Type Description

set_id oid The OID of the replication set

set_nodeid oid OID of the node (always local node oid currently)

set_name name Name of the replication set

replicate_insert boolean Indicates if the replication set replicates INSERTs

replicate_update boolean Indicates if the replication set replicates UPDATEs

replicate_delete boolean Indicates if the replication set replicates DELETEs

replicate_truncate boolean Indicates if the replication set replicates TRUNCATEs

set_isinternal boolean Reserved

set_autoadd_tables boolean Indicates if new tables are automatically added to this replication set

set_autoadd_seqs boolean Indicates if new sequences are automatically added to this replication set

bdr.replication_set_table

A table that stores replication set table membership. For user queries, we recommend instead checking the bdr.tables view.

bdr.replication_set_table columns

Name Type Description

set_id oid The OID of the replication set

set_reloid regclass Local ID of the table

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 337

set_att_list text[] Reserved

set_row_filter pg_node_tree Compiled row filtering expression

Name Type Description

bdr.replication_set_ddl

A table that stores replication set ddl replication filters. For user queries, we recommend instead checking the bdr.ddl_replication view.

bdr.replication_set_ddl Columns

Name Type Description

set_id oid The OID of the replication set

set_ddl_name name Name of the DDL filter

set_ddl_tag text Command tag for the DDL filter

set_ddl_role text Role executing the DDL

bdr.replication_sets

A view showing replication sets defined in the PGD group, even if they aren't currently used by any node.

bdr.replication_sets columns

Name Type Description

set_id oid The OID of the replication set

set_name name Name of the replication set

replicate_insert boolean Indicates if the replication set replicates INSERTs

replicate_update boolean Indicates if the replication set replicates UPDATEs

replicate_delete boolean Indicates if the replication set replicates DELETEs

replicate_truncate boolean Indicates if the replication set replicates TRUNCATEs

set_autoadd_tables boolean Indicates if new tables are automatically added to this replication set

set_autoadd_seqs boolean Indicates if new sequences are automatically added to this replication set

bdr.schema_changes

A simple view to show all the changes to schemas win PGD.

bdr.schema_changes columns

Name Type Description

schema_changes_ts timestampstz The ID of the trigger

schema_changes_change char A flag of change type

schema_changes_classid oid Class ID

schema_changes_objectid oid Object ID

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 338

schema_changes_subid smallint The subscription

schema_changes_descr text The object changed

schema_changes_addrnames text[] Location of schema change

Name Type Description

bdr.sequence_alloc

A view to see the allocation details for galloc sequences.

bdr.sequence_alloc columns

Name Type Description

seqid regclass The ID of the sequence

seq_chunk_size bigint A sequence number for the chunk within its value

seq_allocated_up_to bigint

seq_nallocs bigint

seq_last_alloc timestamptz Last sequence allocated

bdr.sequences

This view lists all sequences with their kind, excluding sequences for internal PGD bookkeeping.

bdr.sequences columns

Name Type Description

nspname name Namespace containing the sequence

relname name Name of the sequence

seqkind text Type of the sequence ('local', 'timeshard', 'galloc')

bdr.stat_activity

Dynamic activity for each backend or worker process.

This contains the same information as pg_stat_activity , except wait_event is set correctly when the wait relates to PGD.

bdr.stat_relation

Apply statistics for each relation. Contains data only if the tracking is enabled and something was replicated for a given relation.

bdr.stat_relation columns

Column Type Description

nspname name Name of the relation's schema

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 339

relname name Name of the relation

relid oid OID of the relation

total_time double
precision

Total time spent processing replication for the relation

ninsert bigint Number of inserts replicated for the relation

nupdate bigint Number of updates replicated for the relation

ndelete bigint Number of deletes replicated for the relation

ntruncate bigint Number of truncates replicated for the relation

shared_blks_hit bigint Total number of shared block cache hits for the relation

shared_blks_read bigint Total number of shared blocks read for the relation

shared_blks_dirtied bigint Total number of shared blocks dirtied for the relation

shared_blks_written bigint Total number of shared blocks written for the relation

blk_read_time double
precision

Total time spent reading blocks for the relation, in milliseconds (if track_io_timing is enabled, otherwise zero)

blk_write_time double
precision

Total time spent writing blocks for the relation, in milliseconds (if track_io_timing is enabled, otherwise zero)

lock_acquire_time double
precision

Total time spent acquiring locks on the relation, in milliseconds (if bdr.track_apply_lock_timing is enabled,
otherwise zero)

Column Type Description

bdr.stat_subscription

Apply statistics for each subscription. Contains data only if the tracking is enabled.

bdr.stat_subscription columns

Column Type Description

sub_name name Name of the subscription

subid oid OID of the subscription

mean_apply_time double precision Average time per apply transaction, in milliseconds

nconnect bigint Number of times this subscription has connected upstream

ncommit bigint Number of commits this subscription did

nabort bigint Number of aborts writer did for this subscription

nerror bigint Number of errors writer has hit for this subscription

nskippedtx bigint Number of transactions skipped by writer for this subscription (due to skip_transaction conflict
resolver)

ninsert bigint Number of inserts this subscription did

nupdate bigint Number of updates this subscription did

ndelete bigint Number of deletes this subscription did

ntruncate bigint Number of truncates this subscription did

nddl bigint Number of DDL operations this subscription has executed

ndeadlocks bigint Number of errors that were caused by deadlocks

nretries bigint Number of retries the writer did (without going for full restart/reconnect)

nstream_writer bigint Number of transactions streamed to writer

nstream_file bigint Number of transactions streamed to file

nstream_commit bigint Number of streaming transactions committed

nstream_abort bigint Number of streaming transactions aborted

nstream_start bigint Number of STREAM START messages processed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 340

nstream_stop bigint Number of STREAM STOP messages processed

nstream_commit bigint Number of streaming transactions committed

nstream_abort bigint Number of streaming transactions aborted

nstream_prepare bigint Number of streaming transactions prepared

nstream_insert bigint Number of streaming inserts processed

nstream_update bigint Number of streaming updates processed

nstream_delete bigint Number of streaming deletes processed

nstream_truncate bigint Number of streaming truncates processed

shared_blks_hit bigint Total number of shared block cache hits by the subscription

shared_blks_read bigint Total number of shared blocks read by the subscription

shared_blks_dirtied bigint Total number of shared blocks dirtied by the subscription

shared_blks_written bigint Total number of shared blocks written by the subscription

blk_read_time double precision Total time the subscription spent reading blocks, in milliseconds (if track_io_timing is enabled,
otherwise zero)

blk_write_time double precision Total time the subscription spent writing blocks, in milliseconds (if track_io_timing is enabled,
otherwise zero)

connect_time timestamp with
time zone

Time when the current upstream connection was established, NULL if not connected

last_disconnect_time timestamp with
time zone

Time when the last upstream connection was dropped

start_lsn pg_lsn LSN from which this subscription requested to start replication from the upstream

retries_at_same_lsn bigint Number of attempts the subscription was restarted from the same LSN value

curr_ncommit bigint Number of commits this subscription did after the current connection was established

npre_commit_confirmations bigint Number of precommit confirmations by CAMO partners

npre_commit bigint Number of precommits

ncommit_prepared bigint Number of prepared transaction commits

nabort_prepared bigint Number of prepared transaction aborts

nprovisional_waits bigint Number of update/delete operations on same tuples by concurrent apply transactions. These are
provisional waits. See Parallel Apply

ntuple_waits bigint Number of update/delete operations that waited to be safely applied. See Parallel Apply

ncommit_waits bigint Number of fully applied transactions that had to wait before being committed. See Parallel Apply

stats_reset timestamp with
time zone

Time when these subscription statistics were reset

Column Type Description

bdr.subscription

This catalog table lists all the subscriptions owned by the local PGD node and their modes.

bdr.subscription columns

Name Type Description

sub_id oid ID of the subscription

sub_name name Name of the subscription

nodegroup_id oid ID of nodegroup

origin_node_id oid ID of origin node

source_node_id oid ID of source node

target_node_id oid ID of target node

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 341

subscription_mode char Mode of subscription

sub_enabled bool Whether the subscription is enabled (should be replication)

apply_delay interval How much behind should the apply of changes on this subscription be (normally
0)

slot_name name Slot on upstream used by this subscription

origin_name name Local origin used by this subscription

num_writers int Number of writer processes this subscription uses

streaming_mode char Streaming configuration for the subscription

replication_sets text[] Replication sets replicated by this subscription (NULL = all)

forward_origin text[] Origins forwarded by this subscription (NULL = all)

Name Type Description

bdr.subscription_summary

This view contains summary information about all PGD subscriptions that the local node has to other nodes.

bdr.subscription_summary columns

Name Type Description

node_group_name name Name of the PGD group the node is part of

sub_name name Name of the subscription

origin_name name Name of the origin node

target_name name Name of the target node (normally local node)

sub_enabled bool Is the subscription enabled

sub_slot_name name Slot name on the origin node used by this subscription

sub_replication_sets text[] Replication sets subscribed

sub_forward_origins text[] Does the subscription accept changes forwarded from other nodes besides the origin

sub_apply_delay interval Delay transactions by this much compared to the origin

sub_origin_name name Replication origin name used by this subscription

bdr_subscription_mode char Subscription mode

subscription_status text Status of the subscription worker

node_group_id oid The OID of the PGD group the node is part of

sub_id oid The OID of the subscription

origin_id oid The OID of the origin node

target_id oid The OID of the target node

receive_lsn pg_lsn Latest LSN of any change or message received (this can go backwards in case of restarts)

receive_commit_lsn pg_lsn Latest LSN of last COMMIT received (this can go backwards in case of restarts)

last_xact_replay_lsn pg_lsn LSN of last transaction replayed on this subscription

last_xact_flush_lsn timestamptz LSN of last transaction replayed on this subscription that's flushed durably to disk

last_xact_replay_timestamp timestamptz Timestamp of last transaction replayed on this subscription

bdr.tables

This view lists information about table membership in replication sets. If a table exists in multiple replication sets, it appears multiple times in this table.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 342

bdr.tables columns

Name Type Description

relid oid The OID of the relation

nspname name Name of the schema relation is in

relname name Name of the relation

set_name name Name of the replication set

set_ops text[] List of replicated operations

rel_columns text[] List of replicated columns (NULL = all columns) (*)

row_filter text Row filtering expression

conflict_detection text Conflict detection method used: row_origin (default), row_version or
column_level

(*) These columns are reserved for future use and should currently be NULL

bdr.taskmgr_work_queue

Contains work items created and processed by task manager. The work items are created on only one node and processed on different nodes.

bdr.taskmgr_work_queue columns

Column Type Description

ap_wq_workid bigint The unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command

ap_wq_relname name Name of the relation the task belongs to

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_category char The work category can be either 'c' (Create Partition), 'm' (Migrate Partition), 'd' (Drop Partition), 'a' (Alter
Partition)

ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] OIDs of the nodes on which the work item depends

bdr.taskmgr_workitem_status

The status of the work items that is updated locally on each node.

bdr.taskmgr_workitem_status columns

Column Type Description

ap_wi_workid bigint The ID of the work item

ap_wi_nodeid Oid OID of the node on which the work item is being processed

ap_wi_status char The status can be either 'q' (Queued), 'c' (Complete), 'f' (Failed), 'u' (Unknown)

ap_wi_started_at timestamptz The start timestamptz of work item

ap_wi_finished_at timestamptz The end timestamptz of work item

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 343

bdr.taskmgr_local_work_queue

Contains work items created and processed by the task manager. This is similar to bdr.taskmgr_work_queue , except that these work items are for locally
managed tables. Each node creates and processes its own local work items, independent of other nodes in the cluster.

bdr.taskmgr_local_work_queue columns

Column Type Description

ap_wq_workid bigint The unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command

ap_wq_relname name Name of the relation the task belongs to

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item.

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_category char The categoty can be either 'c' (Create Partition), 'm' (Migrate Partition), 'd' (Drop Partition), 'a' (Alter
Partition)

ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] Always NULL

bdr.taskmgr_local_workitem_status

The status of the work items for locally managed tables.

bdr.taskmgr_local_workitem_status columns

Column Type Description

ap_wi_workid bigint The ID of the work item

ap_wi_nodeid Oid OID of the node on which the work item is being processed

ap_wi_status char The status can be either 'q' (Queued), 'c' (Complete), 'f' (Failed), 'u' (Unknown)

ap_wi_started_at timestamptz The start timestamptz of work item

ap_wi_finished_at timestamptz The end timestamptz of work item

bdr.trigger

In this view, you can see all the stream triggers created. Often triggers here are created from bdr.create_conflict_trigger .

bdr.trigger columns

Name Type Description

trigger_id oid The ID of the trigger

trigger_reloid regclass Name of the relating
function

trigger_pgtgid oid Postgres trigger ID

trigger_type char Type of trigger call

trigger_name name Name of the trigger

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 344

bdr.triggers

An expanded view of bdr.trigger with columns that are easier to read.

Name Type Description

trigger_name name The name of the trigger

event_manipulation text The operation(s)

trigger_type bdr.trigger_type Type of trigger

trigger_table bdr.trigger_reloid The table that calls it

trigger_function name The function used

bdr.workers

Information about running PGD worker processes.

This can be joined with bdr.stat_activity using pid to get even more insight into the state of PGD workers.

bdr.workers Columns

Name Type Description

worker_pid int Process ID of the worker process

worker_role int Numeric representation of worker role

worker_role_name text Name of the worker role

worker_subid oid Subscription ID if the worker is associated with one

bdr.writers

Specific information about PGD writer processes.

bdr.writers columns

Name Type Description

sub_name name Name of the subscription

pid int Process ID of the worker process

syncing_rel int OID of the relation being synchronized (if any)

streaming_allowed text Can this writer be target of direct to writer streaming

is_streaming bool Is there transaction being streamed to this writer

remote_xid xid Remote transaction id of the transaction being processed (if any)

remote_commit_lsn pg_lsn LSN of last commit processed

commit_queue_position int Position in the internal commit queue

nxacts bigint Number of transactions processed by this writer

ncommits bigint Number of transactions committed by this writer

naborts bigint Number of transactions aborted by this writer

nstream_file bigint Number of streamed-to-file transactions processed by this writer

nstream_writer bigint Number of streamed-to-writer transactions processed by this writer

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 345

bdr.worker_tasks

The bdr.worker_tasks view shows PGD's current worker launch rate limiting state as well as some basic statistics on background worker launch and
registration activity.

Unlike the other views listed here, it isn't specific to the current database and PGD node. State for all PGD nodes on the current PostgreSQL instance is shown. Join
on the current database to filter it.

bdr.worker_tasks doesn't track walsenders and output plugins.

bdr.worker_tasks columns

Column Type Description

task_key_worker_role integer Worker role identifier

task_key_worker_role_name text Worker role name

task_key_dboid oid Database identifier, if available

datname name Name of the database, if available

task_key_subid oid Subscription identifier, if available

sub_name name Name of the subscription, if available

task_key_ext_libname name Name of the library (most likely bdr)

task_key_ext_funcname name Name of the function entry point

task_key_ext_workername name Name assigned to the worker

task_key_remoterelid oid Identifier of the remote syncing relation, if available

task_pid integer Process ID of the worker

task_registered timestamp with time zone Worker registration timestamp

since_registered interval Interval since the worker registered

task_attached timestamp with time zone Worker attach timestamp

since_attached interval Interval since the worker attached

task_exited timestamp with time zone Worker exit timestamp

since_exited interval Interval since the worker exited

task_success boolean Is worker still running?

task_next_launch_not_before timestamp with time zone Timestamp when the worker will be restarted again

until_launch_allowed interval Time remaining for next launch

task_last_launch_requestor_pid integer Process ID that requested launch

task_last_launch_request_time timestamp with time zone Timestamp when the request was made

since_last_request interval Interval since the last request

task_last_launch_request_approved boolean Did the last request succeed?

task_nrequests integer Number of requests

task_nregistrations integer Number of registrations

task_prev_pid integer Process ID of the previous generation

task_prev_registered timestamp with time zone Timestamp of the previous registered task

since_prev_registered interval Interval since the previous registration

task_prev_launched timestamp with time zone Timestamp of the previous launch

since_prev_launched interval Interval since the previous launch

task_prev_exited timestamp with time zone Timestamp when the previous task exited

since_prev_exited interval Interval since the previous task exited

task_first_registered timestamp with time zone Timestamp when the first registration happened

since_first_registered interval Interval since the first registration

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 346

30.2 System functions

Perform PGD management primarily by using functions you call from SQL. All functions in PGD are exposed in the bdr schema. Schema qualify any calls to these
functions instead of putting bdr in the search_path .

Version information functions

bdr.bdr_version

This function retrieves the textual representation of the version of the BDR extension currently in use.

bdr.bdr_version_num

This function retrieves the version number of the BDR extension that is currently in use. Version numbers are monotonically increasing, allowing this value to be
used for less-than and greater-than comparisons.

The following formula returns the version number consisting of major version, minor version, and patch release into a single numerical value:

MAJOR_VERSION * 10000 + MINOR_VERSION * 100 + PATCH_RELEASE

System information functions

bdr.get_relation_stats

Returns the relation information.

bdr.get_subscription_stats

Returns the current subscription statistics.

System and progress information parameters

PGD exposes some parameters that you can query using SHOW in psql or using PQparameterStatus (or equivalent) from a client application.

bdr.local_node_id

When you initialize a session, this is set to the node id the client is connected to. This allows an application to figure out the node it's connected to, even behind a
transparent proxy.

It's also used with Connection pools and proxies.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 347

bdr.last_committed_lsn

After every COMMIT of an asynchronous transaction, this parameter is updated to point to the end of the commit record on the origin node. Combining it with
bdr.wait_for_apply_queue , allows applications to perform causal reads across multiple nodes, that is, to wait until a transaction becomes remotely visible.

transaction_id

As soon as Postgres assigns a transaction id, if CAMO is enabled, this parameter is updated to show the transaction id just assigned.

bdr.is_node_connected

Synopsis

Returns boolean by checking if the walsender for a given peer is active on this node.

bdr.is_node_ready

Synopsis

Returns boolean by checking if the lag is lower than the given span or lower than the timeout for TO ASYNC otherwise.

Consensus function

bdr.consensus_disable

Disables the consensus worker on the local node until server restart or until it's reenabled using bdr.consensus_enable (whichever happens first).

WarningWarning

Disabling consensus disables some features of PGD and affects availability of the EDB Postgres Distributed cluster if left disabled for a long time. Use this
function only when working with Technical Support.

bdr.consensus_enable

Reenabled disabled consensus worker on local node.

bdr.consensus_proto_version

Returns currently used consensus protocol version by the local node.

Needed by the PGD group reconfiguration internal mechanisms.

bdr.is_node_connected(node_name name)

bdr.is_node_ready(node_name name, span interval DEFAULTDEFAULT NULLNULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 348

bdr.consensus_snapshot_export

Synopsis

Generate a new PGD consensus snapshot from the currently committed-and-applied state of the local node and return it as bytea.

By default, a snapshot for the highest supported Raft version is exported. But you can override that by passing an explicit version number.

The exporting node doesn't have to be the current Raft leader, and it doesn't need to be completely up to date with the latest state on the leader. However,
bdr.consensus_snapshot_import() might not accept such a snapshot.

The new snapshot isn't automatically stored to the local node's bdr.local_consensus_snapshot table. It's only returned to the caller.

The generated snapshot might be passed to bdr.consensus_snapshot_import() on any other nodes in the same PGD node group that's behind the
exporting node's Raft log position.

The local PGD consensus worker must be disabled for this function to work. Typical usage is:

 SELECT bdr.bdr_consensus_disable();
 \copy (SELECT * FROM bdr.consensus_snapshot_export()) TO 'my_node_consensus_snapshot.data'
 SELECT bdr.bdr_consensus_enable();

While the PGD consensus worker is disabled:

DDL locking attempts on the node fail or time out.
galloc sequences don't get new values.
Eager and CAMO transactions pause or error.
Other functionality that needs the distributed consensus system is disrupted. The required downtime is generally very brief.

Depending on the use case, it might be practical to extract a snapshot that already exists from the snapshot field of the bdr.local_consensus_snapshot
table and use that instead. Doing so doesn't require you to stop the consensus worker.

bdr.consensus_snapshot_import

Synopsis

Import a consensus snapshot that was exported by bdr.consensus_snapshot_export() , usually from another node in the same PGD node group.

It's also possible to use a snapshot extracted directly from the snapshot field of the bdr.local_consensus_snapshot table on another node.

This function is useful for resetting a PGD node's catalog state to a known good state in case of corruption or user error.

You can import the snapshot if the importing node's apply_index is less than or equal to the snapshot-exporting node's commit_index when the snapshot
was generated. (See bdr.get_raft_status() .) A node that can't accept the snapshot because its log is already too far ahead raises an error and makes no
changes. The imported snapshot doesn't have to be completely up to date, as once the snapshot is imported the node fetches the remaining changes from the
current leader.

The PGD consensus worker must be disabled on the importing node for this function to work. See notes on bdr.consensus_snapshot_export() for details.

It's possible to use this function to force the local node to generate a new Raft snapshot by running:

bdr.consensus_snapshot_export(version integer DEFAULTDEFAULT NULLNULL)

bdr.consensus_snapshot_import(snapshotsnapshot
bytea)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 349

SELECT bdr.consensus_snapshot_import(bdr.consensus_snapshot_export());

This approach might also truncate the Raft logs up to the current applied log position.

bdr.consensus_snapshot_verify

Synopsis

Verify the given consensus snapshot that was exported by bdr.consensus_snapshot_export() . The snapshot header contains the version with which it
was generated and the node tries to verify it against the same version.

The snapshot might have been exported on the same node or any other node in the cluster. If the node verifying the snapshot doesn't support the version of the
exported snapshot, then an error is raised.

bdr.get_consensus_status

Returns status information about the current consensus (Raft) worker.

bdr.get_raft_status

Returns status information about the current consensus (Raft) worker. Alias for bdr.get_consensus_status .

bdr.raft_leadership_transfer

Synopsis

Request the node identified by node_name to be the Raft leader. The request can be initiated from any of the PGD nodes and is internally forwarded to the current
leader to transfer the leadership to the designated node. The designated node must be an ACTIVE PGD node with full voting rights.

If wait_for_completion is false, the request is served on a best-effort basis. If the node can't become a leader in the bdr.raft_election_timeout
period, then some other capable node becomes the leader again. Also, the leadership can change over the period of time per Raft protocol. A true return result
indicates only that the request was submitted successfully.

If wait_for_completion is true , then the function waits until the given node becomes the new leader and possibly waits infinitely if the requested node
fails to become Raft leader (for example, due to network issues). We therefore recommend that you always set a statement_timeout with
wait_for_completion to prevent an infinite loop.

The node_group_name is optional and can be used to specify the name of the node group where the leadership transfer should happen. If not specified, it
defaults to NULL which is interpreted as the top-level group in the cluster. If the node_group_name is specified, the function will only transfer leadership within
the specified node group.

Utility functions

bdr.consensus_snapshot_verify(snapshotsnapshot
bytea)

bdr.raft_leadership_transfer(node_name text,
 wait_for_completion boolean,
 node_group_name text DEFAULTDEFAULT NULLNULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 350

bdr.wait_slot_confirm_lsn

Allows you to wait until the last write on this session was replayed to one or all nodes.

Waits until a slot passes a certain LSN. If no position is supplied, the current write position is used on the local node.

If no slot name is passed, it waits until all PGD slots pass the LSN.

The function polls every 1000 ms for changes from other nodes.

If a slot is dropped concurrently, the wait ends for that slot. If a node is currently down and isn't updating its slot, then the wait continues. You might want to set
statement_timeout to complete earlier in that case.

Synopsis

Parameters

slot_name — Name of replication slot or, if NULL, all PGD slots (only).
target_lsn — LSN to wait for or, if NULL, use the current write LSN on the local node.

bdr.wait_for_apply_queue

The function bdr.wait_for_apply_queue allows a PGD node to wait for the local application of certain transactions originating from a given PGD node. It
returns only after all transactions from that peer node are applied locally. An application or a proxy can use this function to prevent stale reads.

For convenience, PGD provides a variant of this function for CAMO and the CAMO partner node. See bdr.wait_for_camo_partner_queue.

In case a specific LSN is given, that's the point in the recovery stream from which the peer waits. You can use this with bdr.last_committed_lsn retrieved
from that peer node on a previous or concurrent connection.

If the given target_lsn is NULL, this function checks the local receive buffer and uses the LSN of the last transaction received from the given peer node,
effectively waiting for all transactions already received to be applied. This is especially useful in case the peer node has failed and it's not known which transactions
were sent. In this case, transactions that are still in transit or buffered on the sender side aren't waited for.

Synopsis

Parameters

peer_node_name — The name of the peer node from which incoming transactions are expected to be queued and to wait for. If NULL, waits for all peer
node's apply queue to be consumed.
target_lsn — The LSN in the replication stream from the peer node to wait for, usually learned by way of bdr.last_committed_lsn from the peer

node.

bdr.get_node_sub_receive_lsn

bdr.wait_slot_confirm_lsn(slot_name text DEFAULTDEFAULT NULLNULL, target_lsn pg_lsn DEFAULTDEFAULT
NULLNULL)

bdr.wait_for_apply_queue(peer_node_name TEXT, target_lsn pg_lsn)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 351

You can use this function on a subscriber to get the last LSN that was received from the given origin. It can be either unfiltered or filtered to take into account only
relevant LSN increments for transactions to be applied.

The difference between the output of this function and the output of bdr.get_node_sub_apply_lsn() measures the size of the corresponding apply queue.

Synopsis

Parameters

node_name — The name of the node that's the source of the replication stream whose LSN is being retrieved.
committed —; The default (true) makes this function take into account only commits of transactions received rather than the last LSN overall. This

includes actions that have no effect on the subscriber node.

bdr.get_node_sub_apply_lsn

You can use this function on a subscriber to get the last LSN that was received and applied from the given origin.

Synopsis

Parameters

node_name — the name of the node that's the source of the replication stream whose LSN is being retrieved.

bdr.replicate_ddl_command

Function to replicate a DDL command to a group of nodes.

Synopsis

Parameters

ddlcommand — DDL command to execute.
replication_sets — An array of replication set names to apply the ddlcommand to. If NULL (or the fuction is only passed the ddlcommand), this is

set to the active PGD groups's default replication set.
ddl_locking — A string that sets the bdr.ddl_locking value while replicating. Defaults to the GUC value for bdr.ddl_locking on the local

system that is running the replicate_ddl_command.

bdr.get_node_sub_receive_lsn(node_name name, committedcommitted bool defaultdefault truetrue)

bdr.get_node_sub_apply_lsn(node_name name)

bdr.replicate_ddl_command(ddlcommand text,
 replication_sets
text[],
 ddl_locking
text,
 execute_locally bool)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 352

execute_locally — A boolean which determines wether the DDL command will be executed locally. Defaults to true.

Notes

The only required parameter of this function is the ddlcommand .

bdr.run_on_all_nodes

Function to run a query on all nodes.

WarningWarning

This function runs an arbitrary query on a remote node with the privileges of the user used for the internode connections as specified in the node's DSN.
Use caution when granting privileges to this function.

Synopsis

Parameters

query — Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows might be returned from each
node, encoded as a JSON array. Any errors, such as being unable to connect because a node is down, are shown in the response field. No explicit statement_timeout
or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with
bdr.ddl_replication = off , since the commands are already being sent to all of the nodes in the cluster.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. Use either transparent DDL replication or
bdr.replicate_ddl_command() to replicate DDL. DDL might be blocked in a future release.

Example

It's useful to use this function in monitoring, for example, as in the following query:

This query returns something like this on a two-node cluster:

[

bdr.run_on_all_nodes(queryquery text)

SELECTSELECT bdr.run_on_all_nodes($$
 SELECTSELECT local_slot_name, origin_name, target_name,
replay_lag_size
 FROMFROM
bdr.node_slots
 WHEREWHERE origin_name ISIS NOTNOT
NULLNULL
$$);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 353

 {
 "dsn": "host=node1 port=5432 dbname=bdrdb user=postgres ",
 "node_id": "2232128708",
 "response": {
 "command_status": "SELECT 1",
 "command_tuples": [
 {
 "origin_name": "node1",
 "target_name": "node2",
 "local_slot_name": "bdr_bdrdb_bdrgroup_node2",
 "replay_lag_size": "0 bytes"
 }
]
 },
 "node_name": "node1"
 },
 {
 "dsn": "host=node2 port=5432 dbname=bdrdb user=postgres ",
 "node_id": "2058684375",
 "response": {
 "command_status": "SELECT 1",
 "command_tuples": [
 {
 "origin_name": "node2",
 "target_name": "node1",
 "local_slot_name": "bdr_bdrdb_bdrgroup_node1",
 "replay_lag_size": "0 bytes"
 }
]
 },
 "node_name": "node2"
 }
]

bdr.run_on_nodes

Function to run a query on a specified list of nodes.

WarningWarning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's DSN.
Use caution when granting privileges to this function.

Synopsis

bdr.run_on_nodes(node_names text[], query text)

Parameters

node_names — Text ARRAY of node names where query is executed.
query — Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from each node,
encoded as a JSON array. Any errors, such as being unable to connect because a node is down, are shown in the response field. No explicit statement_timeout or

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 354

other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with
bdr.ddl_replication = off , to avoid replication issues when the same replicated DDL command is sent to multiple nodes.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. For global schema changes, use either
transparent DDL replication or bdr.replicate_ddl_command() to replicate DDL.

bdr.run_on_group

Function to run a query on a group of nodes.

WarningWarning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's DSN.
Use caution when granting privileges to this function.

Synopsis

bdr.run_on_group(node_group_name text, query text)

Parameters

node_group_name — Name of node group where query is executed.
query — Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from each node,
encoded as a JSON array. Any errors, such as being unable to connect because a node is down, are shown in the response field. No explicit statement_timeout or
other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with
bdr.ddl_replication = off , to avoid replication issues when the same replicated DDL command is sent to multiple nodes.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes in the group. For global schema changes, use
either transparent DDL replication or bdr.replicate_ddl_command() to replicate DDL.

bdr.global_lock_table

This function acquires a global DML locks on a given table. See DDL locking details for information about global DML lock.

Synopsis

Parameters

bdr.global_lock_table(relation regclass)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 355

relation — Name or oid of the relation to lock.

Notes

This function acquires the global DML lock independently of the ddl_locking setting.

The bdr.global_lock_table function requires UPDATE , DELETE , or TRUNCATE privilege on the locked relation unless
bdr.backwards_compatibility is set to 30618 or lower.

bdr.wait_for_xid_progress

You can use this function to wait for the given transaction (identified by its XID) originated at the given node (identified by its node id) to make enough progress on
the cluster. The progress is defined as the transaction being applied on a node and this node having seen all other replication changes done before the transaction is
applied.

Synopsis

Parameters

origin_node_id — Node id of the node where the transaction originated.

origin_topxid — XID of the transaction.

allnodes — If true then wait for the transaction to progress on all nodes. Otherwise wait only for the current node.

Notes

You can use the function only for those transactions that replicated a DDL command because only those transactions are tracked currently. If a wrong
origin_node_id or origin_topxid is supplied, the function might wait forever or until statement_timeout occurs.

bdr.local_group_slot_name

Returns the name of the group slot on the local node.

Example

bdr.node_group_type

bdr.wait_for_xid_progress(origin_node_id oidoid, origin_topxid int4, allnodes boolean DEFAULTDEFAULT
truetrue)

bdrdb==# SELECTSELECT bdr.local_group_slot_name();

local_group_slot_name

 bdr_bdrdb_bdrgroup

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 356

Returns the type of the given node group. Returned value is the same as what was passed to bdr.create_node_group() when the node group was created,
except global is returned if the node_group_type was passed as NULL when the group was created.

Example

bdr.alter_node_kind

PGD5 introduced a concept of Task Manager Leader node. The node is selected automatically by PGD, but for upgraded clusters, its important to set the
node_kind properly for all nodes in the cluster. The user is expected to do this manually after upgrading to the latest PGD version by calling
bdr.alter_node_kind() SQL function for each node.

Synopsis

Parameters

node_name — Name of the node to change kind.
node_kind — Kind of the node, which can be one of: data , standby , witness , or subscriber-only .

bdr.alter_subscription_skip_changes_upto

Because logical replication can replicate across versions, doesn't replicate global changes like roles, and can replicate selectively, sometimes the logical replication
apply process can encounter an error and stop applying changes.

Wherever possible, fix such problems by making changes to the target side. CREATE any missing table that's blocking replication, CREATE a needed role,
GRANT a necessary permission, and so on. But occasionally a problem can't be fixed that way and it might be necessary to skip entirely over a transaction. Changes

are skipped as entire transactions—all or nothing. To decide where to skip to, use log output to find the commit LSN, per the example that follows, or peek the
change stream with the logical decoding functions.

Unless a transaction made only one change, you often need to manually apply the transaction's effects on the target side, so it's important to save the problem
transaction whenever possible, as shown in the examples that follow.

It's possible to skip over changes without bdr.alter_subscription_skip_changes_upto by using
pg_catalog.pg_logical_slot_get_binary_changes to skip to the LSN of interest, so this is a convenience function. It does do a faster skip, although

it might bypass some kinds of errors in logical decoding.

This function works only on disabled subscriptions.

The usual sequence of steps is:

1. Identify the problem subscription and LSN of the problem commit.
2. Disable the subscription.
3. Save a copy of the transaction using pg_catalog.pg_logical_slot_peek_changes on the source node, if possible.
4. bdr.alter_subscription_skip_changes_upto on the target node.
5. Apply repaired or equivalent changes on the target manually, if necessary.

bdrdb==# SELECTSELECT bdr.node_group_type('bdrgroup');
 node_group_type

 globalglobal

bdr.alter_node_kind(node_name text,
 node_kind
text);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 357

6. Reenable the subscription.

WarningWarning

It's easy to make problems worse when using this function. Don't do anything unless you're certain it's the only option.

Synopsis

Example

Apply of a transaction is failing with an error, and you've determined that lower-impact fixes such as changes on the target side can't resolve this issue. You
determine that you must skip the transaction.

In the error logs, find the commit record LSN to skip to, as in this example:

ERROR: XX000: CONFLICT: target_table_missing; resolver skip_if_recently_dropped returned an error: table does
not exist
CONTEXT: during apply of INSERT from remote relation public.break_me in xact with commit-end lsn 0/300AC18 xid
131315
committs 2021-02-02 15:11:03.913792+01 (action #2) (effective sess origin id=2 lsn=0/300AC18)
while consuming 'I' message from receiver for subscription bdr_regression_bdrgroup_node1_node2 (id=2667578509)
on node node2 (id=3367056606) from upstream node node1 (id=1148549230, reporiginid=2)

In this portion of log, you have the information you need: the_target_lsn: 0/300AC180/300AC18 the_subscription: bdr_regression_bdrgroup_node1_node2bdr_regression_bdrgroup_node1_node2

Next, disable the subscription so the apply worker doesn't try to connect to the replication slot:

You can't skip only parts of the transaction: it's all or nothing. So we strongly recommend that you save a record of it by copying it out on the provider side first, using
the subscription's slot name.

This example is broken into multiple lines for readability, but issue it in a single line. \copy doesn't support multi-line commands.

You can skip the change by changing peek to get , but bdr....skip_changes_upto does a faster skip that avoids decoding and outputting all the data:

You can apply the same changes (or repaired versions of them) manually to the target node, using the dumped transaction contents as a guide.

Finally, reenable the subscription:

 bdr.alter_subscription_skip_changes_upto(
 subname text,
 skip_upto_and_including
pg_lsn
);

 SELECTSELECT
bdr.alter_subscription_disable('the_subscription');

 \\copycopy (SELECTSELECT ** FROMFROM
pg_catalog.pg_logical_slot_peek_changes('the_slot_name',
 'the_target_lsn', NULLNULL, 'min_proto_version', '1', 'max_proto_version', '1',
 'startup_params_format', '1', 'proto_format', 'json'))
 TOTO 'transaction_to_drop.csv' WITHWITH (FORMAT csv);

 SELECTSELECT bdr.alter_subscription_skip_changes_upto('subscription_name',
 'the_target_lsn');

 SELECTSELECT bdr.alter_subscription_enable('the_subscription');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 358

Global advisory locks

PGD supports global advisory locks. These locks are similar to the advisory locks available in PostgreSQL except that the advisory locks supported by PGD are
global. They follow semantics similar to DDL locks. So an advisory lock is obtained by majority consensus and can be used even if one or more nodes are down or
lagging behind, as long as a majority of all nodes can work together.

Currently only EXCLUSIVE locks are supported. So if another node or another backend on the same node has already acquired the advisory lock on the object, then
other nodes or backends must wait for the lock to be released.

Advisory lock is transactional in nature. So the lock is automatically released when the transaction ends unless it's explicitly released before the end of the
transaction. In this case, it becomes available as soon as it's released. Session-level advisory locks aren't currently supported.

Global advisory locks are reentrant. So if the same resource is locked three times, you must then unlock it three times for it to be released for use in other sessions.

bdr.global_advisory_lock

This function acquires an EXCLUSIVE lock on the provided object. If the lock isn't available, then it waits until the lock becomes available or the
bdr.global_lock_timeout is reached.

Synopsis

parameters

key — The object on which an advisory lock is acquired.

Synopsis

parameters

key1 — First part of the composite key.
key2 — second part of the composite key.

bdr.global_advisory_unlock

This function releases a previously acquired lock on the application-defined source. The lock must have been obtained in the same transaction by the application.
Otherwise, an error is raised.

Synopsis

Parameters

bdr.global_advisory_lock(keykey bigint)

bdr.global_advisory_lock(key1 integer, key2 integer)

bdr.global_advisory_unlock(keykey bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 359

key — The object on which an advisory lock is acquired.

Synopsis

Parameters

key1 — First part of the composite key.
key2 — Second part of the composite key.

Monitoring functions

bdr.monitor_group_versions

To provide a cluster-wide version check, this function uses PGD version information returned from the view bdr.group_version_details .

Synopsis

Notes

This function returns a record with fields status and message , as explained in Monitoring.

This function calls bdr.run_on_all_nodes() .

bdr.monitor_group_raft

To provide a cluster-wide Raft check, this function uses PGD Raft information returned from the view bdr.group_raft_details .

Synopsis

Parameters

node_group_name — the node group name that we want to check.

Notes

This function returns a record with fields status and message , as explained in Monitoring.

bdr.global_advisory_unlock(key1 integer, key2 integer)

bdr.monitor_group_versions()

bdr.monitor_group_raft()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 360

This function calls bdr.run_on_all_nodes() .

bdr.monitor_local_replslots

This function uses replication slot status information returned from the view pg_replication_slots (slot active or inactive) to provide a local check
considering all replication slots except the PGD group slots.

Synopsis

Notes

This function returns a record with fields status and message , as explained in Monitoring replication slots.

bdr.wal_sender_stats

If the decoding worker is enabled, this function shows information about the decoder slot and current LCR (logical change record) segment file being read by each
WAL sender.

Synopsis

Output columns

pid — PID of the WAL sender (corresponds to pg_stat_replication 's pid column).

is_using_lcr — Whether the WAL sender is sending LCR files. The next columns are NULL if is_using_lcr is FALSE .

decoder_slot_name — The name of the decoder replication slot.

lcr_file_name — The name of the current LCR file.

bdr.get_decoding_worker_stat

If the decoding worker is enabled, this function shows information about the state of the decoding worker associated with the current database. This also provides
more granular information about decoding worker progress than is available via pg_replication_slots .

Synopsis

Output columns

bdr.monitor_local_replslots()

bdr.wal_sender_stats()

bdr.get_decoding_worker_stat()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 361

pid — The PID of the decoding worker (corresponds to the column active_pid in pg_replication_slots).

decoded_upto_lsn — LSN up to which the decoding worker read transactional logs.

waiting — Whether the decoding worker is waiting for new WAL.

waiting_for_lsn — The LSN of the next expected WAL.

Notes

For further details, see Monitoring WAL senders using LCR.

bdr.lag_control

If Lag Control is enabled, this function shows information about the commit delay and number of nodes conforming to their configured lag measure for the local
node and current database.

Synopsis

Output columns

commit_scope_id — OID of the commit scope (see bdr.commit_scopes)

sessions — Number of sessions referencing the lag control entry

current_commit_delay — Current runtime commit delay, in fractional milliseconds.

maximum_commit_delay — Configured maximum commit delay, in fractional milliseconds.

commit_delay_adjust — Change to runtime commit delay possible during a sample interval, in fractional milliseconds.

curent_conforming_nodes — Current runtime number of nodes conforming to lag measures.

minimum_conforming_nodes — Configured minimum number of nodes required to conform to lag measures, below which a commit delay adjustment
is applied.

lag_bytes_threshold — Lag size at which a commit delay is applied, in kilobytes.

maximum_lag_bytes — Configured maximum lag size, in kilobytes.

lag_time_threshold — Lag time at which a commit delay is applied, in milliseconds.

maximum_lag_time — Configured maximum lag time, in milliseconds.

sample_interval — Configured minimum time between lag samples and possible commit delay adjustments, in milliseconds.

CAMO functions

bdr.lag_control()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 362

CAMO requires that a client actively participates in the committing of a transaction by following the transactions progress. The functions listed here are used for
that purpose and explained in the CAMO section.

bdr.is_camo_partner_connected

Allows checking of the connection status of a CAMO partner node configured in pair mode. There currently is no equivalent for CAMO used with eager replication.

Synopsis

Return value

A Boolean value indicating whether the CAMO partner is currently connected to a WAL sender process on the local node and therefore can receive transactional
data and send back confirmations.

bdr.is_camo_partner_ready

Allows checking of the readiness status of a CAMO partner node configured in pair mode. Underneath, this triggers the switch to and from local mode.

Synopsis

Return value

A Boolean value indicating whether the CAMO partner can reasonably be expected to confirm transactions originating from the local node in a timely manner, that
is, before timeout for TO ASYNC expires.

NoteNote

This function queries the past or current state. A positive return value doesn't indicate whether the CAMO partner can confirm future transactions.

bdr.get_configured_camo_partner

This function shows the local node's CAMO partner (configured by pair mode).

Synopsis

bdr.wait_for_camo_partner_queue

The function is a wrapper around bdr.wait_for_apply_queue defaulting to query the CAMO partner node. It returns an error if the local node isn't part of a

bdr.is_camo_partner_connected()

bdr.is_camo_partner_ready()

bdr.get_configured_camo_partner()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 363

CAMO pair.

Synopsis

bdr.camo_transactions_resolved

This function begins a wait for CAMO transactions to be fully resolved.

Synopsis

bdr.logical_transaction_status

To check the status of a transaction that was being committed when the node failed, the application must use this function, passing as parameters the node id of the
node the transaction originated from and the transaction id on the origin node. These values can be

Synopsis

Parameters

node_id — The node id of the PGD node the transaction originates from, usually retrieved by the client before COMMIT from the PQ parameter
bdr.local_node_id .
xid — The transaction id on the origin node, usually retrieved by the client before COMMIT from the PQ parameter transaction_id .
require_camo_partner — Defaults to true and enables configuration checks. Set to false to disable these checks and query the status of a transaction

that was not a CAMO transaction.

Return value

The function returns one of these results:

'committed'::TEXT — The transaction was committed, is visible on both nodes of the CAMO pair, and is eventually replicated to all other PGD nodes.
No need for the client to retry it.

'aborted'::TEXT — The transaction was aborted and isn't replicated to any other PGD node. The client needs to either retry it or escalate the failure to
commit the transaction.

'in progress'::TEXT — The transaction is still in progress on this local node and wasn't committed or aborted yet. The transaction might be in the
COMMIT phase, waiting for the CAMO partner to confirm or deny the commit. The recommended client reaction is to disconnect from the origin node and
reconnect to the CAMO partner to query that instead. With a load balancer or proxy in between, where the client lacks control over which node gets queried,
the client can only poll repeatedly until the status switches to either 'committed' or 'aborted' .

For eager all-node replication, peer nodes yield this result for transactions that aren't yet committed or aborted. Even transactions not yet replicated (or not

bdr.wait_for_camo_partner_queue()

bdr.camo_transactions_resolved()

bdr.logical_transaction_status(node_id OIDOID, xid
OIDOID,
 require_camo_partner boolean DEFAULTDEFAULT truetrue)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 364

https://www.postgresql.org/docs/current/libpq-status.html#LIBPQ-PQPARAMETERSTATUS
https://www.postgresql.org/docs/current/libpq-status.html#LIBPQ-PQPARAMETERSTATUS

even started on the origin node) might yield an in progress result on a peer PGD node in this case. However, the client must not query the transaction
status prior to attempting to commit on the origin.

'unknown'::TEXT — The transaction specified is unknown, because either it's in the future, not replicated to that specific node yet, or too far in the past.
The status of such a transaction isn't yet or is no longer known. This return value is a sign of improper use by the client.

The client must be prepared to retry the function call on error.

Commit Scope functions

bdr.add_commit_scope

bdr.add_commit_scope creates a rule for the given commit scope name and origin node group. If the rule is the same for all nodes in the EDB Postgres
Distributed cluster, invoking this function once for the top-level node group is enough to fully define the commit scope.

Alternatively, you can invoke it multiple times with the same commit_scope_name but different origin node groups and rules for commit scopes that vary
depending on the origin of the transaction.

Synopsis

bdr.alter_commit_scope

bdr.alter_commit_scope allows you to change a specific rule for a single origin node group in a commit scope.

Synopsis

bdr.remove_commit_scope

Drops a single rule in a commit scope. If you define multiple rules for the commit scope, you must invoke this function once per rule to fully remove the entire
commit scope.

Synopsis

bdr.add_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME,
 rulerule TEXT,
 wait_for_ready boolean DEFAULTDEFAULT
truetrue)

bdr.alter_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME,
 rulerule TEXT)

bdr.remove_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 365

NoteNote

Removing a commit scope that's still used as default by a node group isn't allowed.

30.3 PGD settings

You can also set PGD-specific configuration settings. Unless noted otherwise, you can set the values at any time.

Conflict handling

bdr.default_conflict_detection

Sets the default conflict detection method for newly created tables. Accepts same values as bdr.alter_table_conflict_detection().

Global sequence parameters

bdr.default_sequence_kind

Sets the default sequence kind.

The default value is distributed , which means snowflakeid is used for int8 sequences (i.e., bigserial) and galloc sequence for int4 (i.e.,
serial) and int2 sequences.

DDL handling

bdr.default_replica_identity

Sets the default value for REPLICA IDENTITY on newly created tables. The REPLICA IDENTITY defines the information written to the write-ahead log to
identify rows that are updated or deleted.

The accepted values are:

default — Records the old values of the columns of the primary key, if any (this is the default PostgreSQL behavior).
full — Records the old values of all columns in the row.
nothing — Records no information about the old row.
auto — Tables with PK are created with REPLICA IDENTITY DEFAULT, and tables without PK are created with REPLICA IDENTITY FULL. This is the default

PGD behavior.

See PostgreSQL documentation for more details.

PGD can't replicate UPDATE and DELETE operations on tables without a PRIMARY KEY or UNIQUE constraint. The exception is when the replica identity for
the table is FULL , either by table-specific configuration or by bdr.default_replica_identity .

If bdr.default_replica_identity is default and there is a UNIQUE constraint on the table, it isn't automatically picked up as REPLICA
IDENTITY . You need to set it explicitly when creating the table or after, as described above.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 366

https://www.postgresql.org/docs/current/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY

Setting the replica identity of tables to full increases the volume of WAL written and the amount of data replicated on the wire for the table.

bdr.ddl_replication

Automatically replicate DDL across nodes (default is on).

This parameter can be set only by bdr_superuser or superuser roles.

Running DDL or calling PGD administration functions with bdr.ddl_replication = off can create situations where replication stops until an
administrator can intervene. See DDL replication for details.

A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication is set to off . Additionally, a WARNING-level
message is written whenever replication of captured DDL commands or PGD replication functions is skipped due to this setting.

bdr.role_replication

Automatically replicate ROLE commands across nodes (default is on). Only a superuser can set this parameter. This setting works only if
bdr.ddl_replication is turned on as well.

Turning this off without using external methods to ensure roles are in sync across all nodes might cause replicated DDL to interrupt replication until the
administrator intervenes.

See Role manipulation statements for details.

bdr.ddl_locking

Configures the operation mode of global locking for DDL.

This parameter can be set only by bdr_superuser or superuser roles.

Possible options are:

all — Use global locking for all DDL operations.
dml — Use global locking only for DDL operations that need to prevent writes by taking the global DML lock for a relation.
off — Don't use global locking for DDL operations.

A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication is set to off . Additionally, a WARNING message is
written whenever any global locking steps are skipped due to this setting. It's normal for some statements to result in two WARNING messages: one for skipping
the DML lock and one for skipping the DDL lock.

For backwards compatibility, bdr.ddl_locking supports aliases. on and true are an alias for all . false is an alias for off .

See also Global locking

bdr.truncate_locking

This configuration option sets the TRUNCATE command's locking behavior. Determines whether (when true) TRUNCATE obeys the bdr.ddl_locking setting.
Set to false by default.

Global locking

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 367

DDL locking is controlled by bdr.ddl_locking . Other global locking settings include the following:

bdr.global_lock_max_locks

Sets the maximum number of global locks that can be held on a node (default 1000). Can be set only at Postgres server start.

bdr.global_lock_timeout

Sets the maximum allowed duration of any wait for a global lock (default 10 minutes). A value of zero disables this timeout.

bdr.global_lock_statement_timeout

Sets the maximum allowed duration of any statement holding a global lock (default 60 minutes). A value of zero disables this timeout.

bdr.global_lock_idle_timeout

Sets the maximum allowed duration of idle time in transaction holding a global lock (default 10 minutes). A value of zero disables this timeout.

bdr.predictive_checks

Sets the log level for predictive checks (currently used only by global locks). Can be DEBUG , LOG , WARNING (default), or ERROR . Predictive checks are early
validations for expected cluster state when doing certain operations. You can use them for those operations for fail early rather than wait for timeouts. In global
lock terms, PGD checks that there are enough nodes connected and withing reasonable lag limit for getting quorum needed by the global lock.

Node management

bdr.replay_progress_frequency

Sets the interval for sending replication position info to the rest of the cluster (default 1 minute).

bdr.standby_slot_names

Sets the slots required to receive and confirm replication changes before any other ones. This setting is useful primarily when using physical standbys for failover or
when using subscribe-only nodes.

Generic replication

bdr.writers_per_subscription

Sets the default number of writers per subscription (in PGD, you can also change this with bdr.alter_node_group_config for a group).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 368

bdr.max_writers_per_subscription

Maximum number of writers per subscription (sets upper limit for the setting above).

bdr.xact_replication

Replicate current transaction (default is on).

Turning this off makes the whole transaction local only, which means the transaction isn't visible to logical decoding by PGD and all other downstream targets of
logical decoding. Data isn't transferred to any other node, including logical standby nodes.

This parameter can be set only by the bdr_superuser or superuser roles.

This parameter can be set only inside the current transaction using the SET LOCAL command unless bdr.permit_unsafe_commands = on .

NoteNote

Even with transaction replication disabled, WAL is generated, but those changes are filtered away on the origin.

WarningWarning

Turning off bdr.xact_replication leads to data inconsistency between nodes. Use it only to recover from data divergence between nodes or in
replication situations where changes on single nodes are required for replication to continue. Use at your own risk.

bdr.permit_unsafe_commands

Option to override safety check on commands that are deemed unsafe for general use.

Requires bdr_superuser or PostgreSQL superuser.

WarningWarning

The commands that are normally not considered safe can either produce inconsistent results or break replication altogether. Use at your own risk.

bdr.batch_inserts

Number of consecutive inserts to one table in a single transaction turns on batch processing of inserts for that table.

This setting allows replication of large data loads as COPY internally, rather than set of inserts. It is also how the initial data during node join is copied.

bdr.maximum_clock_skew

This setting specifies the maximum difference between the incoming transaction commit timestamp and the current time on the subscriber before triggering
bdr.maximum_clock_skew_action .

It checks if the timestamp of the currently replayed transaction is in the future compared to the current time on the subscriber. If it is, and the difference is larger
than bdr.maximum_clock_skew , it performs the action specified by the bdr.maximum_clock_skew_action setting.

The default is -1 , which means ignore clock skew (the check is turned off). It's valid to set 0 as when the clock on all servers are synchronized. The fact that we are
replaying the transaction means it has been committed in the past.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 369

bdr.maximum_clock_skew_action

This setting specifies the action to take if a clock skew higher than bdr.maximum_clock_skew is detected.

There are two possible values for this setting:

WARN — Log a warning about this fact. The warnings are logged once per minute (the default) at the maximum to prevent flooding the server log.
WAIT — Wait until the current local timestamp is no longer older than remote commit timestamp minus the bdr.maximum_clock_skew .

bdr.accept_connections

This setting enables or disables connections to PGD. Defaults to on .

Requires bdr_superuser or PostgreSQL superuser.

bdr.standby_slot_names

This setting is typically used in failover configurations to ensure that the failover-candidate streaming physical replicas for this PGD node have received and flushed
all changes before they ever become visible to subscribers. That guarantees that a commit can't vanish on failover to a standby for the provider.

Replication slots whose names are listed in the comma-separated bdr.standby_slot_names list are treated specially by the walsender on a PGD node.

PGD's logical replication walsenders ensures that all local changes are sent and flushed to the replication slots in bdr.standby_slot_names before the node
sends those changes to any other PGD replication clients. Effectively, it provides a synchronous replication barrier between the named list of slots and all other
replication clients.

Any replication slot can be listed in bdr.standby_slot_names . Both logical and physical slots work, but it's generally used for physical slots.

Without this safeguard, two anomalies are possible where a commit can be received by a subscriber and then vanish from the provider on failover because the
failover candidate hadn't received it yet:

For 1+ subscribers, the subscriber might have applied the change but the new provider might execute new transactions that conflict with the received
change, as it never happened as far as the provider is concerned.

For 2+ subscribers, at the time of failover, not all subscribers have applied the change. The subscribers now have inconsistent and irreconcilable states
because the subscribers that didn't receive the commit have no way to get it.

Setting bdr.standby_slot_names by design causes other subscribers not listed in there to lag behind the provider if the required number of listed nodes are
not keeping up. Monitoring is thus essential.

Another use case where bdr.standby_slot_names is useful is when using a subscriber-only node, to ensure that it does not move ahead of any of the regular
PGD nodes. This can best be achieved by listing the logical slots of all regular PGD peer nodes in combination with setting
bdr.standby_slots_min_confirmed to at least one.

bdr.standby_slots_min_confirmed

This setting controls how many of the bdr.standby_slot_names have to confirm before we send data to PGD subscribers.

bdr.writer_input_queue_size

This setting specifies the size of the shared memory queue used by the receiver to send data to the writer process. If the writer process is stalled or making slow
progress, then the queue might get filled up, stalling the receiver process too. So it's important to provide enough shared memory for this queue. The default is 1
MB, and the maximum allowed size is 1 GB. While any storage size specifier can be used to set the GUC, the default is KB.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 370

bdr.writer_output_queue_size

This setting specifies the size of the shared memory queue used by the receiver to receive data from the writer process. Since the writer isn't expected to send a
large amount of data, a relatively smaller sized queue is enough. The default is 32 KB, and the maximum allowed size is 1 MB. While any storage size specifier can
be used to set the GUC, the default is KB.

bdr.min_worker_backoff_delay

This setting allows for rate limiting of PGD background worker launches by preventing a given worker from being relaunched more often than every
bdr.min_worker_backoff_delay milliseconds. On repeated errors, the backoff increases exponentially with added jitter up to maximum of
bdr.max_worker_backoff_delay .

Time-unit suffixes are supported.

NoteNote

This setting currently affects only receiver worker, which means it primarily affects how fast a subscription tries to reconnect on error or connection
failure.

The default for bdr.min_worker_backoff_delay is 1 second. For bdr.max_worker_backoff_delay , it is 1 minute.

If the backoff delay setting is changed and the PostgreSQL configuration is reloaded, then all current backoff waits for reset. Additionally, the
bdr.worker_task_reset_backoff_all() function is provided to allow the administrator to force all backoff intervals to immediately expire.

A tracking table in shared memory is maintained to remember the last launch time of each type of worker. This tracking table isn't persistent. It is cleared by
PostgreSQL restarts, including soft restarts during crash recovery after an unclean backend exit.

You can use the view bdr.worker_tasks to inspect this state so the administrator can see any backoff rate limiting currently in effect.

For rate limiting purposes, workers are classified by task. This key consists of the worker role, database OID, subscription ID, subscription writer ID, extension
library name and function name, extension-supplied worker name, and the remote relation ID for sync writers. NULL is used where a given classifier doesn't apply,
for example, manager workers don't have a subscription ID and receivers don't have a writer ID.

CRDTs

bdr.crdt_raw_value

Sets the output format of CRDT data types.

The default output (when this setting is off) is to return only the current value of the base CRDT type (for example, a bigint for crdt_pncounter). When set to
on , the returned value represents the full representation of the CRDT value, which can, for example, include the state from multiple nodes.

Commit Scope

bdr.commit_scope

Sets the current (or default) commit scope (default is an empty string).

Commit At Most Once

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 371

bdr.camo_local_mode_delay

The commit delay that applies in CAMO's asynchronous mode to emulate the overhead that normally occurs with the CAMO partner having to confirm transactions.
Defaults to 5 ms. Set to 0 to disable this feature. -

bdr.camo_enable_client_warnings

Emit warnings if an activity is carried out in the database for which CAMO properties can't be guaranteed. This is enabled by default. Well-informed users can
choose to disable this to reduce the amount of warnings going into their logs.

Transaction streaming

bdr.default_streaming_mode

Used to control transaction streaming by the subscriber node. Permissible values are: off , writer , file , and auto . Defaults to auto . If set to off , the
subscriber doesn't request transaction streaming. If set to one of the other values, the subscriber requests transaction streaming and the publisher provides it if it
supports them and if configured at group level. For more details, see Transaction streaming.

Lag Control

bdr.lag_control_max_commit_delay

Maximum acceptable post commit delay that can be tolerated, in fractional milliseconds.

bdr.lag_control_max_lag_size

Maximum acceptable lag size that can be tolerated, in kilobytes.

bdr.lag_control_max_lag_time

Maximum acceptable lag time that can be tolerated, in milliseconds.

bdr.lag_control_min_conforming_nodes

Minimum number of nodes required to stay below acceptable lag measures.

bdr.lag_control_commit_delay_adjust

Commit delay micro adjustment measured as a fraction of the maximum commit delay time. At a default value of 0.01%, it takes 100 net increments to reach the
maximum commit delay.

bdr.lag_control_sample_interval

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 372

Minimum time between lag samples and commit delay micro adjustments, in milliseconds.

bdr.lag_control_commit_delay_start

The lag threshold at which commit delay increments start to be applied, expressed as a fraction of acceptable lag measures. At a default value of 1.0%, commit
delay increments don't begin until acceptable lag measures are breached.

By setting a smaller fraction, it might be possible to prevent a breach by "bending the lag curve" earlier so that it's asymptotic with the acceptable lag measure.

Timestamp-based snapshots

bdr.timestamp_snapshot_keep

Time to keep valid snapshots for the timestamp-based snapshot use (default is 0 , meaning don't keep past snapshots).

Monitoring and logging

bdr.debug_level

Defines the log level that PGD uses to write its debug messages. The default value is debug2 . If you want to see detailed PGD debug output, set
bdr.debug_level = 'log' .

bdr.trace_level

Similar to the above, this defines the log level to use for PGD trace messages. Enabling tracing on all nodes of a EDB Postgres Distributed cluster might help EDB
Support to diagnose issues. You can set this only at Postgres server start.

WarningWarning

Setting bdr.debug_level or bdr.trace_level to a value >= log_min_messages can produce a very large volume of log output, so don't
enabled it long term in production unless plans are in place for log filtering, archival, and rotation to prevent disk space exhaustion.

bdr.track_subscription_apply

Track apply statistics for each subscription.

bdr.track_relation_apply

Track apply statistics for each relation.

bdr.track_apply_lock_timing

Track lock timing when tracking statistics for relations.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 373

Decoding Worker

bdr.enable_wal_decoder

Enables logical change record (LCR) sending on a single node with a decoding worker. By default, this setting is false. When set to true, a decoding worker process
starts, and WAL senders send the LCRs it produces. If set back to false, any WAL senders using LCR are restarted and use the WAL directly.

NoteNote

You also need to enable this setting on all nodes in the PGD group and set the enable_wal_decoder option to true on the group.

bdr.receive_lcr

When subscribing to another node, this setting enables the node to request the use of logical change records (LCRs) for the subscription. By default, this setting is
false. When this setting is true on a downstream node, the node requests that upstream nodes use LCRs when sending to it. If you set
bdr.enable_wal_decoder to true on a node, also set this setting to true .

NoteNote

You also need to enable this setting on all nodes in the PGD group and set the enable_wal_decoder option to true on the group.

bdr.lcr_cleanup_interval

Logical change record (LCR) file cleanup interval. When the decoding worker is enabled, the decoding worker stores LCR files as a buffer. These files are periodically
cleaned, and this setting controls the interval between any two consecutive cleanups. The default is 3 minutes. Setting it to zero disables cleanup.

Connectivity settings

The following are a set of connectivity settings affecting all cross-node libpq connections. The defaults are set to fairly conservative values and cover most
production needs. All variables have SIGHUP context, meaning changes are applied upon reload.

bdr.global_connection_timeout

Maximum time to wait while connecting, in seconds. Write as a decimal integer, for example, 10. Zero, negative, or not specified means wait indefinitely. The
minimum allowed timeout is 2 seconds, therefore a value of 1 is interpreted as 2.

The default is 15 seconds.

bdr.global_keepalives

Controls whether TCP keepalives are used. The default value is 1, meaning on. If you don't want keepalives, you can change this to 0, meaning off. This parameter is
ignored for connections made by a Unix-domain socket.

The default is 1 (on).

bdr.global_keepalives_idle

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 374

Controls the number of seconds of inactivity after which TCP sends a keepalive message to the server. A value of zero uses the system default. This parameter is
ignored for connections made by a Unix-domain socket or if keepalives are disabled. It's supported only on systems where TCP_KEEPIDLE or an equivalent
socket option is available. On other systems, it has no effect.

The default is 1 second.

bdr.global_keepalives_interval

Controls the number of seconds after which to retransmit a TCP keepalive message that isn't acknowledged by the server. A value of zero uses the system default.
This parameter is ignored for connections made by a Unix-domain socket or if keepalives are disabled. It's supported only on systems where TCP_KEEPINTVL or
an equivalent socket option is available. On other systems, it has no effect.

The default is 2 seconds.

bdr.global_keepalives_count

Controls the number of TCP keepalives that can be lost before the client's connection to the server is considered dead. A value of zero uses the system default. This
parameter is ignored for connections made by a Unix-domain socket or if keepalives are disabled. It's supported only on systems where TCP_KEEPCNT or an
equivalent socket option is available. On other systems, it has no effect.

The default is 3.

bdr.global_tcp_user_timeout

Controls the number of milliseconds that transmitted data can remain unacknowledged before a connection is forcibly closed. A value of zero uses the system
default. This parameter is ignored for connections made by a Unix-domain socket. It's supported only on systems where TCP_USER_TIMEOUT is available. On
other systems, it has no effect.

The default is 5 seconds (expressed in milliseconds, 5000).

Internal settings - Raft timeouts

bdr.raft_global_election_timeout

To account for network failures, the Raft consensus protocol implements timeouts for elections and requests. This value is used when a request is being sent to the
global (top-level) group. It defaults to 6 seconds (6s).

bdr.raft_local_election_timeout

To account for network failures, the Raft consensus protocol implements timeouts for elections and requests. This value is used when a request is being sent to the
sub-group. It defaults to 3 seconds (3s).

bdr.raft_response_timeout

For responses, the settings of bdr.raft_global_election_timeout and bdr.raft_local_election_timeout are used as appropriate. This
behavior can be overriden by setting this variable. The setting of bdr.raft_response_timeout should be less than either of the election timeout values. Set
this variable to -1 and the override is disabled. It defaults to -1.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 375

Internal settings - Other Raft values

bdr.raft_keep_min_entries

The minimum number of entries to keep in the Raft log when doing log compaction (default 1000 ; PGD 5.3 and earlier: 100). The value of 0 disables log
compaction. You can set this only at Postgres server start.

WarningWarning

If log compaction is disabled, the log grows in size forever.

bdr.raft_log_min_apply_duration

To move the state machine forward, Raft appends entries to its internal log. During normal operation, appending takes only a few milliseconds. This poses an upper
threshold on the duration of that append action, above which an INFO message is logged. This can indicate a problem. Default value of this parameter is 3000 ms.

bdr.raft_log_min_message_duration

When to log a consensus request. Measure roundtrip time of a bdr consensus request and log an INFO message if the time exceeds this parameter. Default value
of this parameter is 5000 ms.

bdr.raft_group_max_connections

The maximum number of connections across all PGD groups for a Postgres server. These connections carry bdr consensus requests between the groups' nodes.
Default value of this parameter is 100 connections. You can set it only at Postgres server start.

Internal settings - Other values

bdr.backwards_compatibility

Specifies the version to be backward compatible to, in the same numerical format as used by bdr.bdr_version_num , e.g., 30618 . Enables exact behavior of
a former PGD version, even if this has generally unwanted effects. Defaults to the current PGD version. Since this changes from release to release, we advise against
explicit use in the configuration file unless the value is different from the current version.

bdr.track_replication_estimates

Track replication estimates in terms of apply rates and catchup intervals for peer nodes. Protocols like CAMO can use this information to estimate the readiness of a
peer node. This parameter is enabled by default.

bdr.lag_tracker_apply_rate_weight

We monitor how far behind peer nodes are in terms of applying WAL from the local node and calculate a moving average of the apply rates for the lag tracking. This
parameter specifies how much contribution newer calculated values have in this moving average calculation. Default value is 0.1.

30.4 Node management

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 376

List of node states

NONE : Node state is unset when the worker starts, expected to be set quickly to the current known state.
CREATED : bdr.create_node() was executed, but the node isn't a member of any EDB Postgres Distributed cluster yet.
JOIN_START : bdr.join_node_group() begins to join the local node to an existing EDB Postgres Distributed cluster.
JOINING : The node join has started and is currently at the initial sync phase, creating the schema and data on the node.
CATCHUP : Initial sync phase is completed. Now the join is at the last step of retrieving and applying transactions that were performed on the upstream peer

node since the join started.
STANDBY : Node join finished, but hasn't yet started to broadcast changes. All joins spend some time in this state, but if defined as a logical standby, the

node continues in this state.
PROMOTE : Node was a logical standby and we just called bdr.promote_node to move the node state to ACTIVE . These two PROMOTE states have to

be coherent to the fact that only one node can be with a state higher than STANDBY but lower than ACTIVE .
PROMOTING : Promotion from logical standby to full PGD node is in progress.
ACTIVE : The node is a full PGD node and is currently ACTIVE . This is the most common node status.
PART_START : Node was ACTIVE or STANDBY and we just called bdr.part_node to remove the node from the EDB Postgres Distributed cluster.
PARTING : Node disconnects from other nodes and plays no further part in consensus or replication.
PART_CATCHUP : Nonparting nodes synchronize any missing data from the recently parted node.
PARTED : Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING.

Node-management commands

PGD also provides a command-line utility for adding nodes to the PGD group using physical copy (pg_basebackup) of an existing node.

bdr_init_physical

This is a regular command that's added to PostgreSQL's bin directory.

You must specify a data directory. If this data directory is empty, use the pg_basebackup -X stream to fill the directory using a fast block-level copy
operation.

If the specified data directory isn't empty, it's used as the base for the new node. Initially it waits for catchup and then promotes to a master node before joining the
PGD group. The --standby option, if used, turns it into a logical standby node.

This command drops all PostgreSQL-native logical replication subscriptions from the database (or disables them when the -S option is used) as well as any
replication origins and slots.

Synopsis

bdr_init_physical [OPTION] ...

Options

General options

-D, --pgdata=DIRECTORY — The data directory to use for the new node. It can be either an empty or nonexistent directory or a directory populated
using the pg_basebackup -X stream command (required).
-l, --log-file=FILE — Use FILE for logging. The default is bdr_init_physical_postgres.log .
-n, --node-name=NAME — The name of the newly created node (required).
--replication-sets=SETS — The name of a comma-separated list of replication set names to use. All replication sets are used if not specified.
--standby — Create a logical standby (receive-only node) rather than full send/receive node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 377

--node-group-name — Group to join. Defaults to the same group as source node.
-s, --stop — Stop the server once the initialization is done.
-v — Increase logging verbosity.
-L — Perform selective pg_basebackup when used with an empty/nonexistent data directory (-D option). This is a feature of EDB Postgres Extended Server

only.
-S — Instead of dropping logical replication subscriptions, disable them.

Connection options

-d, --remote-dsn=CONNSTR — Connection string for remote node (required).
--local-dsn=CONNSTR — Connection string for local node (required).

Configuration files override

--hba-conf — Path to the new pg_hba.conf .
--postgresql-conf — Path to the new postgresql.conf .
--postgresql-auto-conf — Path to the new postgresql.auto.conf .

Notes

The replication set names specified in the command don't affect the data that exists in the data directory before the node joins the PGD group. This is true whether
bdr_init_physical makes its own base backup or an existing base backup is being promoted to a new PGD node. Thus the --replication-sets option

affects only the data published and subscribed to after the node joins the PGD node group. This behavior is different from the way replication sets are used in a
logical join, as when using bdr.join_node_group() .

The operator can truncate unwanted tables after the join completes. Refer to the bdr.tables catalog to determine replication set membership and identify
tables that aren't members of any subscribed-to replication set. We strongly recommend that you truncate the tables rather than drop them, because:

DDL replication sets aren't necessarily the same as row (DML) replication sets, so you might inadvertently drop the table on other nodes.
If you later want to add the table to a replication set and you dropped it on some subset of nodes, you need to re-create it only on those nodes without
creating DDL conflicts before you can add it to any replication sets.

It's simpler and safer to truncate your nonreplicated tables, leaving them present but empty.

30.5 Node management interfaces

You can add and remove nodes dynamically using the SQL interfaces.

bdr.alter_node_group_config

This function changes the configuration parameters of an existing PGD group. Options with NULL value (default for all of them) aren't modified.

WarningWarning

This function only exists for compatibility with PGD4 and 3.7. Please use bdr.alter_node_group_option instead.

Synopsis

bdr.alter_node_group_config(node_group_name text,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 378

Parameters

node_group_name — Name of an existing PGD group. The local node must be part of the group.

insert_to_update — Reserved for backward compatibility.

update_to_insert — Reserved for backward compatibility. This option is deprecated and will be disabled or removed in future versions of PGD. Use
bdr.alter_node_set_conflict_resolver instead.

ignore_redundant_updates — Reserved for backward compatibility.

check_full_tuple — Reserved for backward compatibility.

apply_delay — Reserved for backward compatibility.

check_constraints — Whether the apply process checks the constraints when writing replicated data.

num_writers — Number of parallel writers for subscription backing this node group. -1 means the default (as specified by the GUC
bdr.writers_per_subscription) is used. Valid values are either -1 or a positive integer.

enable_wal_decoder — Enables/disables the decoding worker process. You can't enable the decoding worker process if streaming_mode is
already enabled.

streaming_mode — Enables/disables streaming of large transactions. When set to off , streaming is disabled. When set to any other value, large
transactions are decoded while they're still in progress, and the changes are sent to the downstream. If the value is set to file , then the incoming changes
of streaming transactions are stored in a file and applied only after the transaction is committed on upstream. If the value is set to writer , then the
incoming changes are directly sent to one of the writers, if available. If parallel apply is disabled or no writer is free to handle streaming transaction, then the
changes are written to a file and applied after the transaction is committed. If the value is set to auto , PGD tries to intelligently pick between file and
writer , depending on the transaction property and available resources. You can't enable streaming_mode if the WAL decoder is already enabled.

For more details, see Transaction streaming.

default_commit_scope — The commit scope to use by default, initially the local commit scope. This applies only to the top-level node group. You
can use individual rules for different origin groups of the same commit scope. See Origin groups for more details.

Notes

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally using the consensus
mechanism.

The function isn't transactional. The request is processed in the background so you can't roll back the function call. Also, the changes might not be immediately

 insert_to_update boolean DEFAULTDEFAULT
NULLNULL,
 update_to_insert boolean DEFAULTDEFAULT
NULLNULL,
 ignore_redundant_updates boolean DEFAULTDEFAULT
NULLNULL,
 check_full_tuple boolean DEFAULTDEFAULT
NULLNULL,
 apply_delay interval DEFAULTDEFAULT
NULLNULL,
 check_constraints boolean DEFAULTDEFAULT NULLNULL,
 num_writers int DEFAULTDEFAULT
NULLNULL,
 enable_wal_decoder boolean DEFAULTDEFAULT NULLNULL,
 streaming_mode text DEFAULTDEFAULT
NULLNULL,
 default_commit_scope text DEFAULTDEFAULT NULLNULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 379

visible to the current transaction.

This function doesn't hold any locks.

WarningWarning

When you use this function to change the apply_delay value, the change doesn't apply to nodes that are already members of the group.

bdr.alter_node_group_option

Modify the PGD node group routing configuration.

Synopsis

Parameters

node_group_name — Name of the group to be changed.
config_key — Key of the option in the node group to be changed.
config_value — New value to be set for the given key.

config_value will be parsed into the data type appropriate for the option. Note that some parameters can only be applied to the top-level node group.

The group options which can be changed using this function are:

apply_delay (interval) — How long nodes wait to apply incoming changes. This is useful mainly to setup a special sub-group with delayed
subscriber-only nodes. Don't set this on groups which contain data nodes or on the top-level group. Default is 0s .

check_constraints (boolean) — Whether the apply process checks the constraints when writing replicated data. It's recommended to keep this to
default value, otherwise you risk data loss. Valid values are either on or off . Default is on . This option can only be changed for the top-level node group.

default_commit_scope (text) — The commit scope to use by default, initially the local commit scope. This applies only to the top-level node
group. You can use individual rules for different origin groups of the same commit scope. See Origin groups for more details.

enable_proxy_routing (boolean) — Where pgd-proxy through the group leader is enabled for given group. Valid values are on or off .
Default is off .

enable_raft (boolean) — Whether group has its own Raft consensus. This is necessary for setting enable_proxy_routing to on . This is
always on for the top-level group. Valid values are on or off . Default is off for subgroups.

enable_wal_decoder (boolean) — Enables/disables the decoding worker process. You can't enable the decoding worker process if
streaming_mode is already enabled. Valid values are either on or off . Default is off .

location (text) — Information about node location, this is purely metadata for monitoring. Default is '' (empty string).

num_writers (integer) — Number of parallel writers for the subscription backing this node group. Valid values are either -1 or a positive integer. -
1 means the value specified by the GUC bdr.writers_per_subscription is used. -1 is the default, This option can only be changed for the top-
level node group.

route_reader_max_lag (integer) — Maximum lag in bytes for a node to be considered a viable read-only node. Currently reserved for future use.

bdr.alter_node_group_option(node_group_name text,
 config_key text,
 config_value text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 380

route_writer_max_lag (integer) — Maximum lag in bytes of the new write candidate to be selected as write leader. If no candidate passes this, no
writer is selected automatically. Default is -1 .

route_writer_wait_flush (boolean) — Whether to switch if we need to wait for the flush. Currently reserved for future use.

streaming_mode (text) — Enables/disables streaming of large transactions. When set to off , streaming is disabled. When set to any other value,
large transactions are decoded while they're still in progress, and the changes are sent to the downstream. If the value is set to file , then the incoming
changes of streaming transactions are stored in a file and applied only after the transaction is committed on upstream. If the value is set to writer , then
the incoming changes are directly sent to one of the writers, if available. If parallel apply is disabled or no writer is free to handle streaming transactions,
then the changes are written to a file and applied after the transaction is committed. If the value is set to auto , PGD tries to intelligently pick between
file and writer , depending on the transaction property and available resources. You can't enable streaming_mode if the WAL decoder is already

enabled. Default is auto

For more details, see Transaction streaming.

Return value

bdr.alter_node_group_option() returns VOID on success.

An ERROR is raised if any of the provided parameters is invalid.

Notes

The current state of node group options can be examined via the view bdr.node_group_summary .

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally using the consensus
mechanism.

The function isn't transactional. The request is processed in the background so you can't roll back the function call. Also, the changes might not be immediately
visible to the current transaction.

This function doesn't hold any locks.

bdr.alter_node_interface

This function changes the connection string (DSN) of a specified node.

Synopsis

Parameters

node_name — Name of an existing node to alter.
interface_dsn — New connection string for a node.

Notes

bdr.alter_node_interface(node_name text, interface_dsn text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 381

Run this function and make the changes only on the local node. This means that you normally execute it on every node in the PGD group, including the node that is
being changed.

This function is transactional. You can roll it back, and the changes are visible to the current transaction.

The function holds lock on the local node.

bdr.alter_node_option

Modify the PGD node routing configuration

Synopsis

Parameters

node_name — Name of the node to be changed.
config_key — Key of the option in the node to be changed.
config_value — New value to be set for the given key.

The node options that can be changed using this function are:

route_priority — Relative routing priority of the node against other nodes in the same node group. Default is '-1'.
route_fence — Whether the node is fenced from routing; when true, the node can't receive connections from PGD Proxy. Default is 'f' (false).
route_writes — Whether writes can be routed to this node, that is, whether the node can become write leader. Default is 't' (true) for data nodes and 'f'

(false) for other node types.
route_reads — Whether read-only connections can be routed to this node. Currently reserved for future use. Default is 't' (true) for data and subscriber-

only nodes, 'f' (false) for witness and standby nodes.
route_dsn — The dsn that the proxy will use to connect to this node. This is optional; if not set it defaults to the node's node_dsn value.

bdr.alter_subscription_enable

This function enables either the specified subscription or all the subscriptions of the local PGD node. This is also known as resume subscription. No error is thrown if
the subscription is already enabled. Returns the number of subscriptions affected by this operation.

Synopsis

Parameters

bdr.alter_node_option(node_name text,
 config_key text,
 config_value
text);

bdr.alter_subscription_enable(
 subscription_name name DEFAULTDEFAULT NULLNULL,
 immediateimmediate boolean DEFAULTDEFAULT falsefalse
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 382

subscription_name — Name of the subscription to enable. If NULL (the default), all subscriptions on the local node are enabled.
immediate — This currently has no effect.

Notes

This function isn't replicated and affects only local node subscriptions (either a specific node or all nodes).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. The subscription workers are started by a background
process after the transaction has committed.

bdr.alter_subscription_disable

This function disables either the specified subscription or all the subscriptions of the local PGD node. Optionally, it can also immediately stop all the workers
associated with the disabled subscriptions. This is also known as pause subscription. No error is thrown if the subscription is already disabled. Returns the number
of subscriptions affected by this operation.

Synopsis

Parameters

subscription_name — Name of the subscription to disable. If NULL (the default), all subscriptions on the local node are disabled.
immediate — Used to force the action immediately, stopping all the workers associated with the disabled subscription. When this option is true , you

can't run this function inside of the transaction block.
fast — This argument influences the behavior of immediate . If set to true (the default) it stops all the workers associated with the disabled

subscription without waiting for them to finish current work.

Notes

This function isn't replicated and affects only local node subscriptions (either a specific subscription or all subscriptions).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. However, the timing of the subscription worker stopping
depends on the value of immediate . If set to true , the workers receive the stop without waiting for the COMMIT . If the fast argument is set to true , the
interruption of the workers doesn't wait for current work to finish.

bdr.create_node

This function creates a node.

Synopsis

bdr.alter_subscription_disable(
 subscription_name name DEFAULTDEFAULT NULLNULL,
 immediateimmediate boolean DEFAULTDEFAULT falsefalse,
 fastfast boolean DEFAULTDEFAULT truetrue
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 383

Parameters

node_name — Name of the new node. Only one node is allowed per database. Valid node names consist of lowercase letters, numbers, hyphens, and
underscores.
local_dsn — Connection string to the node.
node_kind — One of data (the default), standby , subscriber-only , or witness . If you don't set this parameter, or if you provide NULL , the

default data node kind is used.

Notes

This function creates a record for the local node with the associated public connection string. There can be only one local record, so once it's created, the function
reports an error if run again.

This function is a transactional function. You can roll it back and the changes made by it are visible to the current transaction.

The function holds lock on the newly created node until the end of the transaction.

bdr.create_node_group

This function creates a PGD node group. By default, the local node should join the group as the only member. You can add more nodes to the group with
bdr.join_node_group() .

Synopsis

Parameters

node_group_name — Name of the new PGD group. As with the node name, valid group names must consist of only lowercase letters, numbers, and
underscores.
parent_group_name — If a node subgroup is being created, this must be the name of the parent group. Provide NULL (the default) when creating the

main node group for the cluster.
join_node_group — This parameter determines whether the node joins the group being created. The default value is true . Providing false when

creating a subgroup means the local node won't join the new group, for example, when creating a independent remote group. In this case, you must specify
parent_group_name .
node_group_type — The valid values are NULL , subscriber-only , and shard . NULL (the default) is for creating a normal, general-purpose

node group. subscriber-only is for creating subscriber-only groups whose members receive changes only from the fully joined nodes in the cluster but
that never send changes to other nodes. shard is reserved for future use.

Notes

This function passes a request to the local consensus worker that's running for the local node.

bdr.create_node(node_name text,
 local_dsn text,
 node_kind DEFAULTDEFAULT NULLNULL)

bdr.create_node_group(node_group_name text,
 parent_group_name text DEFAULTDEFAULT NULLNULL,
 join_node_group boolean DEFAULTDEFAULT truetrue,
 node_group_type text DEFAULTDEFAULT NULLNULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 384

The function isn't transactional. The creation of the group is a background process, so once the function finishes, you can't roll back the changes. Also, the changes
might not be immediately visible to the current transaction. You can call bdr.wait_for_join_completion to wait until they are.

The group creation doesn't hold any locks.

bdr.join_node_group

This function joins the local node to an already existing PGD group.

Synopsis

Parameters

join_target_dsn — Specifies the connection string to an existing (source) node in the PGD group you want to add the local node to.
node_group_name — Optional name of the PGD group. Defaults to NULL, which tries to detect the group name from information present on the source

node.
wait_for_completion — Wait for the join process to complete before returning. Defaults to true .
synchronize_structure — Set the kind of structure (schema) synchronization to do during the join. The default setting is all , which synchronizes

the complete database structure, The other available setting is none , which doesn't synchronize any structure. However, it still synchronizes data (except
for witness nodes, which by design do not synchronize data).
pause_in_standby — Optionally tells the join process to join only as a logical standby node, which can be later promoted to a full member. This option is

deprecated and will be disabled or removed in future versions of PGD.

WarningWarning

pause_in_standby is deprecated since BDR 5.0. The recommended way to create a logical standby is to set node_kind to standby when
creating the node with bdr.create_node .

If wait_for_completion is specified as false , the function call returns as soon as the joining procedure starts. You can see the progress of the join in the
log files and the bdr.event_summary information view. You can call the function bdr.wait_for_join_completion() after
bdr.join_node_group() to wait for the join operation to complete. It can emit progress information if called with verbose_progress set to true .

Notes

This function passes a request to the group consensus mechanism by way of the node that the join_target_dsn connection string points to. The changes
made are replicated globally by the consensus mechanism.

The function isn't transactional. The joining process happens in the background and you can't roll it back. The changes are visible only to the local transaction if
wait_for_completion was set to true or by calling bdr.wait_for_join_completion later.

Node can be part of only a single group, so you can call this function only once on each node.

bdr.join_node_group
(
 join_target_dsn text,
 node_group_name text DEFAULTDEFAULT NULLNULL,
 pause_in_standby boolean DEFAULTDEFAULT
NULLNULL,
 wait_for_completion boolean DEFAULTDEFAULT
truetrue,
 synchronize_structure text DEFAULTDEFAULT
'all'
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 385

Node join doesn't hold any locks in the PGD group.

bdr.part_node

Removes (parts) the node from the PGD group but doesn't remove data from the node.

You can call the function from any active node in the PGD group, including the node that you're removing. However, once the node is parted, it can't part other
nodes in the cluster.

NoteNote

If you're parting the local node, you must set wait_for_completion to false . Otherwise, it reports an error.

WarningWarning

This action is permanent. If you want to temporarily halt replication to a node, see bdr.alter_subscription_disable() .

Synopsis

Parameters

node_name — Name of an existing node to part.
wait_for_completion — If true , the function doesn't return until the node is fully parted from the cluster. Otherwise the function starts the parting

procedure and returns immediately without waiting. Always set to false when executing on the local node or when using force .
force — Forces removal of the node on the local node. This sets the node state locally if consensus can't be reached or if the node parting process is stuck.

WarningWarning

Using force = true can leave the PGD group in an inconsistent state. Use it only to recover from failures in which you can't remove the node any
other way.

Notes

This function passes a request to the group consensus mechanism to part the given node. The changes made are replicated globally by the consensus mechanism.
The parting process happens in the background, and you can't roll it back. The changes made by the parting process are visible only to the local transaction if
wait_for_completion was set to true .

With force set to true , on consensus failure, this function sets the state of the given node only on the local node. In such a case, the function is transactional
(because the function changes the node state) and you can roll it back. If the function is called on a node that is already in process of parting with force set to
true , it also marks the given node as parted locally and exits. This is useful only when the consensus can't be reached on the cluster (that is, the majority of the

nodes are down) or if the parting process is stuck. But it's important to take into account that when the parting node that was receiving writes, the parting process
can take a long time without being stuck. The other nodes need to resynchronize any missing data from the given node. The force parting completely skips this
resynchronization and can leave the other nodes in an inconsistent state.

The parting process doesn't hold any locks.

bdr.part_node
(
 node_name text,
 wait_for_completion boolean DEFAULTDEFAULT
truetrue,
 forceforce boolean DEFAULTDEFAULT falsefalse
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 386

bdr.promote_node

This function promotes a local logical standby node to a full member of the PGD group.

Synopsis

Notes

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional. The promotion process happens in the background, and you can't roll it back. The changes are visible only to the local transaction if
wait_for_completion was set to true or by calling bdr.wait_for_join_completion later.

The promotion process holds lock against other promotions. This lock doesn't block other bdr.promote_node calls but prevents the background process of
promotion from moving forward on more than one node at a time.

bdr.switch_node_group

This function switches the local node from its current subgroup to another subgroup within the same existing PGD node group.

Synopsis

Parameters

node_group_name — Name of the PGD group or subgroup.
wait_for_completion — Wait for the switch process to complete before returning. Defaults to true .

If wait_for_completion is specified as false , this is an asynchronous call that returns as soon as the switching procedure starts. You can see progress of
the switch in logs and the bdr.event_summary information view or by calling the bdr.wait_for_join_completion() function after
bdr.switch_node_group() returns.

Notes

This function passes a request to the group consensus mechanism. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional. The switching process happens in the background and you can't roll it back. The changes are visible only to the local transaction if
wait_for_completion was set to true or by calling bdr.wait_for_join_completion later.

The local node changes membership from its current subgroup to another subgroup within the same PGD node group without needing to part the cluster. The node's

bdr.promote_node(wait_for_completion boolean DEFAULTDEFAULT truetrue)

bdr.switch_node_group
(
 node_group_name text,
 wait_for_completion boolean DEFAULTDEFAULT
truetrue
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 387

kind must match that of existing nodes within the target subgroup.

Node switching doesn't hold any locks in the PGD group.

Restrictions: Currently, the function only allows switching between a subgroup and its PGD node group. To effect a move between subgroups it is necessary to make
two separate calls: 1) switch from subgroup to node group and, 2) switch from node group to other subgroup.

bdr.wait_for_join_completion

This function waits for the join procedure of a local node to finish.

Synopsis

Parameters

verbose_progress — Optionally prints information about individual steps taken during the join procedure.

Notes

This function waits until the checks state of the local node reaches the target state, which was set by bdr.create_node_group , bdr.join_node_group ,
or bdr.promote_node .

30.6 Routing functions

bdr.create_proxy

Create a proxy

Synopsis

Parameters

proxy_name — Name of the new proxy.
node_group — Name of the group to be used by the proxy.

bdr.alter_proxy_option

Change a proxy

bdr.wait_for_join_completion(verbose_progress boolean DEFAULTDEFAULT falsefalse)

bdr.create_proxy(proxy_name text, node_group
text);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 388

Synopsis

Parameters

proxy_name — Name of the proxy to be changed.
config_key — Key of the option in the proxy to be changed.
config_value — New value to be set for the given key.

The proxy options that can be changed using this function are:

listen_address — Address for the proxy to listen on. Default is '{0.0.0.0}'.
listen_port — Port for the proxy to listen on. Default is '6432'.
max_client_conn — Maximum number of connections for the proxy to accept. Default is '32767'.
max_server_conn — Maximum number of connections the proxy can make to the Postgres node. Default is '32767'.
server_conn_timeout — Connection timeout for server connections. Default is '2' (seconds).
server_conn_keepalive — Keepalive interval for server connections. Default is '10' (seconds).
consensus_grace_period — Duration for which proxy continues to route even upon loss of a Raft leader. If set to 0s, proxy stops routing immediately.

Default is generally '6' (seconds) for local proxies and '12' (seconds) for global proxies. These values will be overriden if raft_response_timeout ,
raft_global_election_timeout or raft_group_election_timeout are changed from their defaults.

bdr.drop_proxy

Drop a proxy

Synopsis

Parameters

proxy_name — Name of the proxy to be dropped.

bdr.routing_leadership_transfer

Changing the routing leader transfers the leadership of the node group to another node

Synopsis

bdr.alter_proxy_option(proxy_name text, config_key text, config_value
text);

bdr.drop_proxy(proxy_name
text);

bdr.routing_leadership_transfer(node_group_name text,
 leader_name
text,
 transfer_method text DEFAULTDEFAULT 'strict',
 transfer_timeout interval DEFAULTDEFAULT
'10s');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 389

Parameters

node_group_name — Name of group where the leadership transfer is requested.
leader_name — Name of node that will become write leader.
transfer_method — Type of the transfer, it can be "fast" or the default "strict" that checks the maximum lag.
transfer_timeout — Timeout of the leadership transfer, default is 10 seconds.

30.7 Commit scopes

Commit scopes are rules that determine how transaction commits and conflicts are handled within a PGD system. You can read more about them in Durability.

You can manipulate commit scopes using the following functions:

bdr.add_commit_scope
bdr.alter_commit_scope
bdr.remove_commit_scope

Commit scope syntax

The overall grammar for commit scope rules is composed as follows:

commit_scope:
 commit_scope_operation [AND ...]

commit_scope_operation:
 commit_scope_group confirmation_level commit_scope_kind

commit_scope_group:
{ ANY num [NOT] (node_group [, ...])
 | MAJORITY [NOT] (node_group [, ...])
 | ALL [NOT] (node_group [, ...]) }

confirmation_level:
 [ON { received|replicated|durable|visible }]

commit_scope_kind:
{ GROUP COMMIT [(group_commit_parameter = value [, ...])] [ABORT ON (abort_on_parameter = value)]
 | CAMO [DEGRADE ON (degrade_on_parameter = value) TO ASYNC]
 | LAG CONTROL [(lag_control_parameter = value [, ...])]
 | SYNCHRONOUS_COMMIT }

Where node_group is the name of a PGD data node group.

Commit scope groups

ANY

Example: ANY 2 (left_dc)

A transaction under this commit scope group will be considered committed after any two nodes in the left_dc group confirm they processed the transaction.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 390

ANY NOT

Example: ANY 2 NOT (left_dc)

A transaction under this commit scope group will be considered committed if any two nodes that aren't in the left_dc group confirm they processed the
transaction.

MAJORITY

Example: MAJORITY (left_dc)

A transaction under this commit scope group will be considered committed if a majority of the nodes in the left_dc group confirm they processed the
transaction.

MAJORITY NOT

Example: MAJORITY NOT (left_dc)

A transaction under this commit scope group will be considered committed if a majority of the nodes that aren't in the left_dc group confirm they processed the
transaction.

ALL

Example: ALL (left_dc)

A transaction under this commit scope group will be considered committed if all of the nodes in the left_dc group confirm they processed the transaction.

When ALL is used with GROUP COMMIT , the commit_decision setting must be set to raft to avoid reconciliation issues.

ALL NOT

Example: ALL NOT (left_dc)

A transaction under this commit scope group will be considered committed if all of the nodes that aren't in the left_dc group confirm they processed the
transaction.

Confirmation level

The confirmation level sets the point in time when a remote PGD node confirms that it reached a particular point in processing a transaction.

ON received

A transaction is confirmed immediately after receiving it, prior to starting the local application.

ON replicated

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 391

A transaction is confirmed after applying changes of the transaction but before flushing them to disk.

ON durable

A transaction is confirmed after all of its changes are flushed to disk.

ON visible

This is the default visibility. A transaction is confirmed after all of its changes are flushed to disk and it's visible to concurrent transactions.

Commit Scope kinds

More details of the commit scope kinds and details of their parameters:

Group Commit
CAMO (Commit At Most Once)
Lag Control
Synchronous Commit

Parameter valuesParameter values

Specify Boolean, enum, int, and interval values using the Postgres GUC parameter value conventions.

GROUP COMMIT

Allows commits to be confirmed by a consensus of nodes and controls conflict resolution settings.

GROUP COMMIT [(group_commit_parameter = value [, ...])] [ABORT ON (abort_on_parameter = value)]

GROUP COMMIT parameters

Parameter Type Default Description

transaction_tracking Boolean Off/False Specifies whether to track status of transaction. See transaction_tracking settings.

conflict_resolution enum async Specifies how to handle conflicts. (async | eager). See conflict_resolution settings.

commit_decision enum group Specifies how the COMMIT decision is made. (group | partner | raft). See commit_decision
settings.

ABORT ON parameters

Parameter Type Default Description

timeout interval 0 Timeout in milliseconds (accepts other units). (0 means not set.)

require_write_lead bool false CAMO only. If set, then for a transaction to switch to local (async) mode, a consensus request is required.

transaction_tracking settings

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 392

https://www.postgresql.org/docs/current/config-setting.html#CONFIG-SETTING-NAMES-VALUES

When set to true, two-phase commit transactions:

Look up commit decisions when a writer is processing a PREPARE message.
When recovering from an interruption, look up the transactions prepared before the interruption. When found, it then looks up the commit scope of the
transaction and any corresponding RAFT commit decision. Suppose the node is the origin of the transaction and doesn't have a RAFT commit decision, and
transaction_tracking is on in the commit scope. In that case, it periodically looks for a RAFT commit decision for this unresolved transaction until it's

committed or aborted.

conflict_resolution settings

The value async means resolve conflicts asynchronously during replication using the conflict resolution policy.

The value eager means that conflicts are resolved eagerly during COMMIT by aborting one of the conflicting transactions.

Eager is only available with MAJORITY or ALL commit scope groups.

When used with the ALL commit scope group, the commit_decision must be set to raft to avoid reconcilation issue.

See "Conflict resolution" in Group Commit.

commit_decision settings

The value group means the preceding commit_scope_group specification also affects the COMMIT decision, not just durability.

The value partner means the partner node decides whether transactions can be committed. This value is allowed only on groups with 2 data nodes.

The value raft means the decision makes use of PGD's built-in Raft consensus. Once all the nodes in the selected commit scope group have confirmed the
transaction, to ensure that all the nodes in the PGD cluster have noted the transaction, it is noted with the all-node Raft.

This option must be used when the ALL commit scope group is being used to ensure no divergence between the nodes over the decision. This option may have low
performance.

See "Commit decisions" in Group Commit.

CAMO

With the client's cooperation, enables protection to prevent multiple insertions of the same transaction in failover scenarios.

See "CAMO" in Durability for more details.

CAMO [DEGRADE ON (degrade_on_parameter = value) TO ASYNC]

Degrade On parameters

Allows degrading to asynchronous operation on timeout.

Parameter Type Default Description

timeout interval 0 Timeout in milliseconds (accepts other units) after which operation becomes asynchronous. (0 means not set.)

require_write_lead Boolean False Specifies whether the node must be a write lead to be able to switch to asynchronous mode.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 393

LAG CONTROL

Allows the configuration of dynamic rate-limiting controlled by replication lag.

See "Lag Control" in Durability for more details.

LAG CONTROL [(lag_control_parameter = value [, ...])]

LAG CONTROL parameters

Parameter Type

D
e
f
a
u
lt

Description

max_lag
_size

int 0
The maximum lag in kB that a given node can have in the replication connection to another node. When the lag exceeds this
maximum scaled by max_commit_delay , lag control adjusts the commit delay.

max_lag
_time

interval 0 The maximum replication lag in milliseconds that the given origin can have with regard to a replication connection to a given
downstream node.

max_com
mit_del
ay

interval 0

Configures the maximum delay each commit can take, in fractional milliseconds. If set to 0, it disables Lag Control. After each
commit delay adjustment (for example, if the replication is lagging more than max_lag_size or max_lag_time), the
commit delay is recalculated with the weight of the bdr.lag_control_commit_delay_adjust GUC. The
max_commit_delay is a ceiling for the commit delay.

If max_lag_size and max_lag_time are set to 0, the LAG CONTROL is disabled.
If max_commit_delay is not set or set to 0, the LAG CONTROL is disabled.

The lag size is derived from the delta of the send_ptr of the walsender to the apply_ptr of the receiver.

The lag time is calculated according to the following formula:

 lag_time = (lag_size / apply_rate) * 1000;

Where lag_size is the delta between the send_ptr and apply_ptr (as used for max_lag_size), and apply_rate is a weighted exponential
moving average, following the simplified formula:

 apply_rate = prev_apply_rate * (1 - apply_rate_weight) +
 ((apply_ptr_diff * apply_rate_weight) / diff_secs);

Where:

prev_apply_rate was the previously configured apply_rate , before recalculating the new rate.
apply_rate_weight is the value of the GUC bdr.lag_tracker_apply_rate_weight .
apply_ptr_diff is the difference between the current apply_ptr and the apply_ptr at the point in time when the apply rate was last computed.
diff_secs is the delta in seconds from the last time the apply rate was calculated.

SYNCHRONOUS_COMMIT

SYNCHRONOUS_COMMIT

The SYNCHRONOUS_COMMIT commit scope kind has no parameters. It's effectively configured only by the commit scope group and commit scope visibility.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 394

30.8 Replication set management

Replication management and DDLReplication management and DDL

With the exception of bdr.alter_node_replication_sets , the following functions are considered to be DDL . DDL replication and global
locking apply to them, if that's currently active. See DDL replication.

bdr.create_replication_set

This function creates a replication set.

Replication of this command is affected by DDL replication configuration including DDL filtering settings.

Synopsis

Parameters

set_name — Name of the new replication set. Must be unique across the PGD group.
replicate_insert — Indicates whether to replicate inserts into tables in this replication set.
replicate_update — Indicates whether to replicate updates of tables in this replication set.
replicate_delete — Indicates whether to replicate deletes from tables in this replication set.
replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.
autoadd_tables — Indicates whether to replicate newly created (future) tables to this replication set
autoadd_existing — Indicates whether to add all existing user tables to this replication set. This parameter has an effect only if autoadd_tables is

set to true .

Notes

By default, new replication sets don't replicate DDL or PGD administration function calls. See ddl filters for how to set up DDL replication for replication sets. A
preexisting DDL filter is set up for the default group replication set that replicates all DDL and admin function calls. It's created when the group is created but can
be dropped in case you don't want the PGD group default replication set to replicate DDL or the PGD administration function calls.

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.create_replication_set(set_name name,
 replicate_insert boolean DEFAULTDEFAULT
truetrue,
 replicate_update boolean DEFAULTDEFAULT
truetrue,
 replicate_delete boolean DEFAULTDEFAULT
truetrue,
 replicate_truncate boolean DEFAULTDEFAULT truetrue,
 autoadd_tables boolean DEFAULTDEFAULT
falsefalse,
 autoadd_existing boolean DEFAULTDEFAULT
truetrue)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 395

bdr.alter_replication_set

This function modifies the options of an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

set_name — Name of an existing replication set.
replicate_insert — Indicates whether to replicate inserts into tables in this replication set.
replicate_update — Indicates whether to replicate updates of tables in this replication set.
replicate_delete — Indicates whether to replicate deletes from tables in this replication set.
replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.
autoadd_tables — Indicates whether to add newly created (future) tables to this replication set.

Any of the options that are set to NULL (the default) remain the same as before.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.drop_replication_set

This function removes an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

bdr.alter_replication_set(set_name name,
 replicate_insert boolean DEFAULTDEFAULT
NULLNULL,
 replicate_update boolean DEFAULTDEFAULT
NULLNULL,
 replicate_delete boolean DEFAULTDEFAULT
NULLNULL,
 replicate_truncate boolean DEFAULTDEFAULT NULLNULL,
 autoadd_tables boolean DEFAULTDEFAULT
NULLNULL)

bdr.drop_replication_set(set_name name)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 396

set_name — Name of an existing replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

WarningWarning

Don't drop a replication set that's being used by at least another node, because doing so stops replication on that node. If that happens, unsubscribe the
affected node from that replication set. For the same reason, don't drop a replication set with a join operation in progress when the node being joined is a
member of that replication set. Replication set membership is checked only at the beginning of the join. This happens because the information on
replication set usage is local to each node, so that you can configure it on a node before it joins the group.

You can manage replication set subscription for a node using alter_node_replication_sets .

bdr.alter_node_replication_sets

This function changes the replication sets a node publishes and is subscribed to.

Synopsis

Parameters

node_name — The node to modify. Currently has to be local node.
set_names — Array of replication sets to replicate to the specified node. An empty array results in the use of the group default replication set.

Notes

This function is executed only on the local node and isn't replicated in any manner.

The replication sets listed aren't checked for existence, since this function is designed to execute before the node joins. Be careful to specify replication set names
correctly to avoid errors.

This allows for calling the function not only on the node that's part of the PGD group but also on a node that hasn't joined any group yet. This approach limits the
data synchronized during the join. However, the schema is always fully synchronized without regard to the replication sets setting. All tables are copied across, not
just the ones specified in the replication set. You can drop unwanted tables by referring to the bdr.tables catalog table. These might be removed automatically
in later versions of PGD. This is currently true even if the ddl filters configuration otherwise prevent replication of DDL.

The replication sets that the node subscribes to after this call are published by the other nodes for actually replicating the changes from those nodes to the node
where this function is executed.

30.9 Replication set membership

bdr.alter_node_replication_sets(node_name name,
 set_names text[])

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 397

bdr.replication_set_add_table

This function adds a table to a replication set.

This adds a table to a replication set and starts replicating changes from this moment (or rather transaction commit). Any existing data the table might have on a
node isn't synchronized.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

relation — Name or Oid of a table.
set_name — Name of the replication set. If NULL (the default), then the PGD group default replication set is used.
columns — Reserved for future use (currently does nothing and must be NULL).
row_filter — SQL expression to be used for filtering the replicated rows. If this expression isn't defined (that is, set to NULL, the default) then all rows

are sent.

The row_filter specifies an expression producing a Boolean result, with NULLs. Expressions evaluating to True or Unknown replicate the row. A False value
doesn't replicate the row. Expressions can't contain subqueries or refer to variables other than columns of the current row being replicated. You can't reference
system columns.

row_filter executes on the origin node, not on the target node. This puts an additional CPU overhead on replication for this specific table but completely
avoids sending data for filtered rows. Hence network bandwidth is reduced and overhead on the target node is applied.

row_filter never removes TRUNCATE commands for a specific table. You can filter away TRUNCATE commands at the replication set level.

You can replicate just some columns of a table. See Replicating between nodes with differences.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a DML global lock on the relation that's being added to the replication set if the row_filter isn't NULL. Otherwise it takes just a DDL
global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.replication_set_remove_table

This function removes a table from the replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

bdr.replication_set_add_table(relation regclass,
 set_name name DEFAULTDEFAULT
NULLNULL,
 columnscolumns text[] DEFAULTDEFAULT
NULLNULL,
 row_filter text DEFAULTDEFAULT NULLNULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 398

Synopsis

Parameters

relation — Name or Oid of a table.
set_name — Name of the replication set. If NULL (the default), then the PGD group default replication set is used.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

30.10 DDL replication filtering

See also DDL replication filtering

bdr.replication_set_add_ddl_filter

This function adds a DDL filter to a replication set.

Any DDL that matches the given filter is replicated to any node that's subscribed to that set. This also affects replication of PGD admin functions.

This doesn't prevent execution of DDL on any node. It only alters whether DDL is replicated to other nodes. Suppose two nodes have a replication filter between
them that excludes all index commands. Index commands can still be executed freely by directly connecting to each node and executing the desired DDL on that
node.

The DDL filter can specify a command_tag and role_name to allow replication of only some DDL statements. The command_tag is the same as those used
by EVENT TRIGGERs for regular PostgreSQL commands. A typical example might be to create a filter that prevents additional index commands on a logical standby
from being replicated to all other nodes.

You can filter the PGD admin functions used by using a tagname matching the qualified function name. For example, bdr.replication_set_add_table is
the command tag for the function of the same name. In this case, this tag allows all PGD functions to be filtered using bdr.* .

The role_name is used for matching against the current role that is executing the command. Both command_tag and role_name are evaluated as regular
expressions, which are case sensitive.

Synopsis

bdr.replication_set_remove_table(relation regclass,
 set_name name DEFAULTDEFAULT
NULLNULL)

bdr.replication_set_add_ddl_filter(set_name name,
 ddl_filter_name text,
 command_tag
text,
 role_name text DEFAULTDEFAULT NULLNULL,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 399

https://www.postgresql.org/docs/current/static/event-trigger-matrix.html

Parameters

set_name — name of the replication set; if NULL then the PGD group default replication set is used
ddl_filter_name — name of the DDL filter; this must be unique across the whole PGD group
command_tag — regular expression for matching command tags; NULL means match everything
role_name — regular expression for matching role name; NULL means match all roles
base_relation_name — reserved for future use, must be NULL
query_match — regular expression for matching the query; NULL means match all queries
exclusive — if true, other matched filters are not taken into consideration (that is, only the exclusive filter is applied), when multiple exclusive filters

match, we throw an error. This is useful for routing specific commands to specific replication set, while keeping the default replication through the main
replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration. This also means
that replication of changes to ddl filter configuration is affected by the existing ddl filter configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

To view the defined replication filters, use the view bdr.ddl_replication .

Examples

To include only PGD admin functions, define a filter like this:

To exclude everything apart from index DDL:

To include all operations on tables and indexes but exclude all others, add two filters: one for tables, one for indexes. This shows that multiple filters provide the
union of all allowed DDL commands:

bdr.replication_set_remove_ddl_filter

This function removes the DDL filter from a replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings themselves.

 base_relation_name text DEFAULTDEFAULT NULLNULL,
 query_match text DEFAULTDEFAULT
NULLNULL,
 exclusiveexclusive boolean DEFAULTDEFAULT FALSEFALSE)

SELECTSELECT bdr.replication_set_add_ddl_filter('mygroup', 'mygroup_admin',
$$bdr\..*..*$$);

SELECTSELECT bdr.replication_set_add_ddl_filter('mygroup', 'index_filter',
 '^(?!(CREATE INDEX|DROP INDEX|ALTER
INDEX)).*');

SELECTSELECT bdr.replication_set_add_ddl_filter('bdrgroup','index_filter', '^((?!INDEX).)*$');
SELECTSELECT bdr.replication_set_add_ddl_filter('bdrgroup','table_filter', '^((?!TABLE).)*$');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 400

Synopsis

Parameters

set_name — Name of the replication set. If NULL then the PGD group default replication set is used.
ddl_filter_name — Name of the DDL filter to remove.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration. This also means
that replication of changes to the DDL filter configuration is affected by the existing DDL filter configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

30.11 Testing and tuning commands

EDB Postgres Distributed has tools that help with testing and tuning your PGD clusters. For background, see Testing and tuning.

pgd_bench

Synopsis

A benchmarking tool for EDB Postgres Distributed deployments.

pgd_bench [OPTION]... [DBNAME] [DBNAME2]

DBNAME can be a conninfo string of the format: "host=10.1.1.2 user=postgres dbname=master"

See pgd_bench in Testing and tuning for examples of pgd_bench options and usage.

Options

The pgd_bench command is implemented as a wrapper around the pgbench command. This means that it shares many of the same options and created tables
named pgbench as it performs its testing.

Options that are specific to pgd_bench include the following.

Setting mode

-m or --mode

bdr.replication_set_remove_ddl_filter(set_name name,
 ddl_filter_name text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 401

The mode can be set to regular , camo , or failover . The default is regular .

regular — Only a single node is needed to run pgd_bench.
camo — A second node must be specified to act as the CAMO partner. (CAMO must be set up.)
failover — A second node must be specified to act as the failover.

When using -m failover , an additional option --retry is available. This option instructs pgd_bench to retry transactions when there's a failover. The --
retry option is automatically enabled when -m camo is used.

Setting GUC variables

-o or --set-option

This option is followed by NAME=VALUE entries, which are applied using the Postgres SET command on each server that pgd_bench connects to, and only those
servers.

The other options are identical to the Postgres pgbench command. For details, see the PostgreSQL pgbench documentation.

The complete list of options (pgd_bench and pgbench) follow.

Initialization options

-i, --initialize — Invoke initialization mode.
-I, --init-steps=[dtgGvpf]+ (default "dtgvp") — Run selected initialization steps.

d — Drop any existing pgbench tables.
t — Create the tables used by the standard pgbench scenario.
g — Generate data client-side and load it into the standard tables, replacing any data already present.
G — Generate data server-side and load it into the standard tables, replacing any data already present.
v — Invoke VACUUM on the standard tables.
p — Create primary key indexes on the standard tables.
f — Create foreign key constraints between the standard tables.

-F, --fillfactor=NUM — Set fill factor.
-n, --no-vacuum — Don't run VACUUM during initialization.
-q, --quiet — Quiet logging (one message every 5 seconds).
-s, --scale=NUM — Scaling factor.
--foreign-keys — Create foreign key constraints between tables.
--index-tablespace=TABLESPACE — Create indexes in the specified tablespace.
--partition-method=(range|hash) — Partition pgbench_accounts with this method. The default is range .
--partitions=NUM — Partition pgbench_accounts into NUM parts. The default is 0 .
--tablespace=TABLESPACE — Create tables in the specified tablespace.
--unlogged-tables — Create tables as unlogged tables. (Note: Unlogged tables aren't replicated.)

Options to select what to run

-b, --builtin=NAME[@W] — Add built-in script NAME weighted at W. The default is 1. Use -b list to list available scripts.
-f, --file=FILENAME[@W] — Add script FILENAME weighted at W. The default is 1.
-N, --skip-some-updates — Updates of pgbench_tellers and pgbench_branches. Same as -b simple-update .
-S, --select-only — Perform SELECT-only transactions. Same as -b select-only .

Benchmarking options

-c, --client=NUM — Number of concurrent database clients. The default is 1.
-C, --connect — Establish new connection for each transaction.
-D, --define=VARNAME=VALUE — Define variable for use by custom script.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 402

https://www.postgresql.org/docs/current/sql-set.html
https://www.postgresql.org/docs/current/pgbench.html

-j, --jobs=NUM — Number of threads. The default is 1.
-l, --log — Write transaction times to log file.
-L, --latency-limit=NUM — Count transactions lasting more than NUM ms as late.
-m, --mode=regular|camo|failover — Mode in which to run pgbench. The default is regular .
-M, --protocol=simple|extended|prepared — Protocol for submitting queries. The default is simple .
-n, --no-vacuum — Don't run VACUUM before tests.
-o, --set-option=NAME=VALUE — Specify runtime SET option.
-P, --progress=NUM — Show thread progress report every NUM seconds.
-r, --report-per-command — Latencies, failures, and retries per command.
-R, --rate=NUM — Target rate in transactions per second.
-s, --scale=NUM — Report this scale factor in output.
-t, --transactions=NUM — Number of transactions each client runs. The default is 10.
-T, --time=NUM — Duration of benchmark test, in seconds.
-v, --vacuum-all — Vacuum all four standard tables before tests.
--aggregate-interval=NUM — Data over NUM seconds.
--failures-detailed — Report the failures grouped by basic types.
--log-prefix=PREFIX — Prefix for transaction time log file. The default is pgbench_log .
--max-tries=NUM — Max number of tries to run transaction. The default is 1 .
--progress-timestamp — Use Unix epoch timestamps for progress.
--random-seed=SEED — Set random seed (time , rand , integer).
--retry — Retry transactions on failover, used with -m .
--sampling-rate=NUM — Fraction of transactions to log, for example, 0.01 for 1%.
--show-script=NAME — Show built-in script code, then exit.
--verbose-errors — Print messages of all errors.

Common options:

-d, --debug — Print debugging output.
-h, --host=HOSTNAME — Database server host or socket directory.
-p, --port=PORT — Database server port number.
-U, --username=USERNAME — Connect as specified database user.
-V, --version — Output version information, then exit.
-?, --help — Show help, then exit.

30.12 Global sequence management interfaces

PGD provides an interface for converting between a standard PostgreSQL sequence and the PGD global sequence.

The following functions are considered to be DDL , so DDL replication and global locking applies to them.

Sequence functions

bdr.alter_sequence_set_kind

Allows the owner of a sequence to set the kind of a sequence. Once set, seqkind is visible only by way of the bdr.sequences view. In all other ways, the
sequence appears as a normal sequence.

PGD treats this function as DDL , so DDL replication and global locking applies, if it's currently active. See DDL Replication.

Synopsis

bdr.alter_sequence_set_kind(seqoid regclass, seqkind text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 403

Parameters

seqoid — Name or Oid of the sequence to alter.
seqkind — local for a standard PostgreSQL sequence, snowflakeid or galloc for globally unique PGD sequences, or timeshard for legacy

globally unique sequence.

Notes

When changing the sequence kind to galloc , the first allocated range for that sequence uses the sequence start value as the starting point. When there are
existing values that were used by the sequence before it was changed to galloc , we recommend moving the starting point so that the newly generated values
don't conflict with the existing ones using the following command:

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DDL lock. It also locks the sequence locally.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the sequence can execute the bdr.alter_sequence_set_kind function unless bdr.backwards_compatibility is set is set to
30618 or lower.

bdr.extract_timestamp_from_snowflakeid

This function extracts the timestamp component of the snowflakeid sequence. The return value is of type timestamptz.

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.extract_nodeid_from_snowflakeid

This function extracts the nodeid component of the snowflakeid sequence.

Synopsis

ALTERALTER SEQUENCESEQUENCE seq_name STARTSTART starting_value
RESTART

bdr.extract_timestamp_from_snowflakeid(snowflakeid bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 404

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_snowflakeid

This function extracts the local sequence value component of the snowflakeid sequence.

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_snowflakeid

This function converts a timestamp value to a dummy snowflakeid sequence value.

This is useful for doing indexed searches or comparisons of values in the snowflakeid column and for a specific timestamp.

For example, given a table foo with a column id that's using a snowflakeid sequence, we can get the number of changes since yesterday midnight like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_snowflakeid('yesterday')

A query formulated this way uses an index scan on the column id .

Synopsis

Parameters

bdr.extract_nodeid_from_snowflakeid(snowflakeid bigint)

bdr.extract_localseqid_from_snowflakeid(snowflakeid bigint)

bdr.timestamp_to_snowflakeid(ts timestamptz)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 405

ts — Timestamp to use for the snowflakeid sequence generation.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_timeshard

This function extracts the timestamp component of the timeshard sequence. The return value is of type timestamptz.

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.extract_nodeid_from_timeshard

This function extracts the nodeid component of the timeshard sequence.

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_timeshard

This function extracts the local sequence value component of the timeshard sequence.

bdr.extract_timestamp_from_timeshard(timeshard_seq bigint)

bdr.extract_nodeid_from_timeshard(timeshard_seq bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 406

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_timeshard

This function converts a timestamp value to a dummy timeshard sequence value.

This is useful for doing indexed searches or comparisons of values in the timeshard column and for a specific timestamp.

For example, given a table foo with a column id that's using a timeshard sequence, we can get the number of changes since yesterday midnight like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_timeshard('yesterday')

A query formulated this way uses an index scan on the column id .

Synopsis

Parameters

ts — Timestamp to use for the timeshard sequence generation.

Notes

This function executes only on the local node.

KSUUID v2 Functions

Functions for working with KSUUID v2 data, K-Sortable UUID data. See also KSUUID in the sequences documentation.

bdr.gen_ksuuid_v2

This function generates a new KSUUID v2 value using the value of timestamp passed as an argument or current system time if NULL is passed. If you want to
generate KSUUID automatically using the system time, pass a NULL argument.

bdr.extract_localseqid_from_timeshard(timeshard_seq bigint)

bdr.timestamp_to_timeshard(ts timestamptz)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 407

The return value is of type UUID.

Synopsis

Notes

This function executes only on the local node.

bdr.ksuuid_v2_cmp

This function compares the KSUUID v2 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

Parameters

UUID — KSUUID v2 to compare.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_ksuuid_v2

This function extracts the timestamp component of KSUUID v2. The return value is of type timestamptz.

Synopsis

Parameters

UUID — KSUUID v2 value to extract timestamp from.

Notes

This function executes only on the local node.

bdr.gen_ksuuid_v2(timestamptz)

bdr.ksuuid_v2_cmp(uuid, uuid)

bdr.extract_timestamp_from_ksuuid_v2(uuid)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 408

KSUUID v1 functions

Functions for working with KSUUID v1 data, K-Sortable UUID data(v1). Deprecated - See KSUUID in the sequences documentation for details.

bdr.gen_ksuuid

This function generates a new KSUUID v1 value, using the current system time. The return value is of type UUID.

Synopsis

Notes

This function executes only on the local node.

bdr.uuid_v1_cmp

This function compares the KSUUID v1 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

Notes

This function executes only on the local node.

Parameters

UUID — KSUUID v1 to compare.

bdr.extract_timestamp_from_ksuuid

This function extracts the timestamp component of KSUUID v1 or UUIDv1 values. The return value is of type timestamptz.

Synopsis

bdr.gen_ksuuid()

bdr.uuid_v1_cmp(uuid, uuid)

bdr.extract_timestamp_from_ksuuid(uuid)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 409

Parameters

UUID — KSUUID v1 value to extract timestamp from.

Notes

This function executes on the local node.

30.13 Autopartition

Autopartition allows you to split tables into several partitions. For more information, see Scaling.

bdr.autopartition

The bdr.autopartition function configures automatic RANGE partitioning of a table.

Synopsis

Parameters

relation — Name or Oid of a table.
partition_increment — Interval or increment to next partition creation.
partition_initial_lowerbound — If the table has no partition, then the first partition with this lower bound and partition_increment apart

upper bound is created.
partition_autocreate_expression — The expression used to detect if it's time to create new partitions.
minimum_advance_partitions — The system attempts to always have at least minimum_advance_partitions partitions.
maximum_advance_partitions — Number of partitions to create in a single go after the number of advance partitions falls below
minimum_advance_partitions .
data_retention_period — Interval until older partitions are dropped, if defined. This value must be greater than migrate_after_period .
managed_locally — If true, then the partitions are managed locally.
enabled — Allows activity to be disabled or paused and later resumed or reenabled.

Examples

Daily partitions, keep data for one month:

bdr.autopartition(relation regclass,
 partition_increment
text,
 partition_initial_lowerbound text DEFAULTDEFAULT NULLNULL,
 partition_autocreate_expression text DEFAULTDEFAULT
NULLNULL,
 minimum_advance_partitions integer DEFAULTDEFAULT
2,
 maximum_advance_partitions integer DEFAULTDEFAULT
5,
 data_retention_period interval DEFAULTDEFAULT
NULLNULL,
 managed_locally boolean DEFAULTDEFAULT falsefalse,
 enabled boolean DEFAULTDEFAULT onon);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 410

Create five advance partitions when only two more partitions remain. Each partition can hold 1 billion orders.

bdr.drop_autopartition

Use bdr.drop_autopartition() to drop the autopartitioning rule for the given relation. All pending work items for the relation are deleted, and no new
work items are created.

Parameters

relation — Name or Oid of a table.

bdr.autopartition_wait_for_partitions

Partition creation is an asynchronous process. AutoPartition provides a set of functions to wait for the partition to be created, locally or on all nodes.

Use bdr.autopartition_wait_for_partitions() to wait for the creation of partitions on the local node. The function takes the partitioned table name
and a partition key column value and waits until the partition that holds that value is created.

The function waits only for the partitions to be created locally. It doesn't guarantee that the partitions also exists on the remote nodes.

To wait for the partition to be created on all PGD nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This function
internally checks local as well as all remote nodes and waits until the partition is created everywhere.

Synopsis

Parameters

relation — Name or Oid of a table.
upperbound — Partition key column value.

CREATECREATE TABLETABLE measurement
(
logdate date notnot nullnull,
peaktemp int,
unitsales int
) PARTITIONPARTITION BYBY RANGERANGE (logdate);

bdr.autopartition('measurement', '1 day', data_retention_period :=:= '30
days');

bdr.autopartition('Orders', '1000000000',
 partition_initial_lowerbound :=:= '0',
 minimum_advance_partitions :=:=
2,
 maximum_advance_partitions :=:=
5
);

bdr.drop_autopartition(relation regclass);

bdr.autopartition_wait_for_partitions(relation regclass, upperbound
text);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 411

bdr.autopartition_wait_for_partitions_on_all_nodes

Synopsis

Parameters

relation — Name or Oid of a table.
upperbound — Partition key column value.

bdr.autopartition_find_partition

Use the bdr.autopartition_find_partition() function to find the partition for the given partition key value. If partition to hold that value doesn't exist,
then the function returns NULL. Otherwise Oid of the partition is returned.

Synopsis

Parameters

relname — Name of the partitioned table.
searchkey — Partition key value to search.

bdr.autopartition_enable

Use bdr.autopartition_enable to enable AutoPartitioning on the given table. If AutoPartitioning is already enabled, then no action occurs. See
bdr.autopartition_disable to disable AutoPartitioning on the given table.

Synopsis

Parameters

relname — Name of the relation to enable AutoPartitioning.

bdr.autopartition_disable

Use bdr.autopartition_disable to disable AutoPartitioning on the given table. If AutoPartitioning is already disabled, then no action occurs.

bdr.autopartition_wait_for_partitions_on_all_nodes(relation regclass, upperbound
text);

bdr.autopartition_find_partition(relname regclass, searchkey
text);

bdr.autopartition_enable(relname regclass);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 412

Synopsis

Parameters

relname — Name of the relation to disable AutoPartitioning.

Internal functions

bdr.autopartition_create_partition

AutoPartition uses an internal function bdr.autopartition_create_partition to create a standalone AutoPartition on the parent table.

Synopsis

Parameters

relname — Name or Oid of the parent table to attach to.
partname — Name of the new AutoPartition.
lowerb — Lower bound of the partition.
upperb — Upper bound of the partition.
nodes — List of nodes that the new partition resides on. This parameter is internal to PGD and reserved for future use.

Notes

This is an internal function used by AutoPartition for partition management. We recommend that you don't use the function directly.

bdr.autopartition_drop_partition

AutoPartition uses an internal function bdr.autopartition_drop_partition to drop a partition that's no longer required, as per the data-retention policy.
If the partitioned table was successfully dropped, the function returns true .

Synopsis

bdr.autopartition_disable(relname regclass);

bdr.autopartition_create_partition(relname regclass,
 partname
name,
 lowerb
text,
 upperb
text,
 nodes oidoid[]);

bdr.autopartition_drop_partition(relname regclass)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 413

Parameters

relname — The name of the partitioned table to drop.

Notes

This function places a DDL lock on the parent table before using DROP TABLE on the chosen partition table. This function is an internal function used by
AutoPartition for partition management. We recommend that you don't use the function directly.

30.14 Stream triggers reference

SeeAlsoSeeAlso

Stream Triggers for an introduction to Stream Triggers.

Both conflict triggers and transform triggers have access to information about rows and metadata by way of the predefined variables provided by the trigger API and
additional information functions provided by PGD.

In PL/pgSQL, you can use the predefined variables and functions that follow:

Row variables
Row Information functions

bdr.trigger_get_row
bdr.trigger_get_committs
bdr.trigger_get_xid
bdr.trigger_get_type
bdr.trigger_get_conflict_type
bdr.trigger_get_origin_node_id
bdr.ri_fkey_on_del_trigger

Creating and dropping stream triggers is managed through the manipulation interfaces:

Manipulation interfaces
bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger

30.14.1 Stream triggers manipulation interfaces

You can create stream triggers only on tables with REPLICA IDENTITY FULL or tables without any columns to which TOAST applies.

bdr.create_conflict_trigger

This function creates a new conflict trigger.

Synopsis

bdr.create_conflict_trigger(trigger_name text,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 414

Parameters

trigger_name — Name of the new trigger.
events — Array of events on which to fire this trigger. Valid values are ' INSERT ', ' UPDATE ', and ' DELETE '.
relation — Relation to fire this trigger for.
function — The function to execute.
args — Optional. Specifies the array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similar to normal PostgreSQL triggers, the bdr.create_conflict_trigger function requires TRIGGER privilege on the relation and EXECUTE
privilege on the function. This applies with a bdr.backwards_compatibility of 30619 or above. Additional security rules apply in PGD to all triggers
including conflict triggers. See Security and roles.

bdr.create_transform_trigger

This function creates a transform trigger.

Synopsis

Parameters

trigger_name — Name of the new trigger.
events — Array of events on which to fire this trigger. Valid values are ' INSERT ', ' UPDATE ', and ' DELETE '.
relation — Relation to fire this trigger for.
function — The function to execute.
args — Optional. Specify array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

Notes

 eventsevents text[],
 relation
regclass,
 functionfunction regprocedure,
 args text[] DEFAULTDEFAULT
'{}')

bdr.create_transform_trigger(trigger_name text,
 eventsevents text[],
 relation
regclass,
 functionfunction regprocedure,
 args text[] DEFAULTDEFAULT
'{}')

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 415

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similarly to normal PostgreSQL triggers, the bdr.create_transform_trigger function requires the TRIGGER privilege on the relation and
EXECUTE privilege on the function. Additional security rules apply in PGD to all triggers including transform triggers. See Security and roles.

bdr.drop_trigger

This function removes an existing stream trigger (both conflict and transform).

Synopsis

Parameters

trigger_name — Name of an existing trigger.
relation — The relation the trigger is defined for.
ifexists — When set to true , this function ignores missing triggers.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the relation can execute the bdr.drop_trigger function.

30.14.2 Stream triggers row functions

bdr.trigger_get_row

This function returns the contents of a trigger row specified by an identifier as a RECORD . This function returns NULL if called inappropriately, that is, called with
SOURCE_NEW when the operation type (TG_OP) is DELETE .

Synopsis

bdr.drop_trigger(trigger_name text,
 relation
regclass,
 ifexists boolean DEFAULTDEFAULT
falsefalse)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 416

Parameters

row_id — identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on the trigger type and operation (see
description of individual trigger types).

bdr.trigger_get_committs

This function returns the commit timestamp of a trigger row specified by an identifier. If not available because a row is frozen or isn't available, returns NULL .
Always returns NULL for row identifier SOURCE_OLD .

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation (see description of
individual trigger types).

bdr.trigger_get_xid

This function returns the local transaction id of a TARGET row specified by an identifier. If not available because a row is frozen or isn't available, returns NULL .
Always returns NULL for SOURCE_OLD and SOURCE_NEW row identifiers.

Available only for conflict triggers.

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation (see description of
individual trigger types).

bdr.trigger_get_type

This function returns the current trigger type, which can be CONFLICT or TRANSFORM . Returns null if called outside a stream trigger.

Synopsis

bdr.trigger_get_row(row_id text)

bdr.trigger_get_committs(row_id text)

bdr.trigger_get_xid(row_id text)

bdr.trigger_get_type()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 417

bdr.trigger_get_conflict_type

This function returns the current conflict type if called inside a conflict trigger. Otherwise, returns NULL .

See Conflict types for possible return values of this function.

Synopsis

bdr.trigger_get_origin_node_id

This function returns the node id corresponding to the origin for the trigger row_id passed in as argument. If the origin isn't valid (which means the row originated
locally), returns the node id of the source or target node, depending on the trigger row argument. Always returns NULL for row identifier SOURCE_OLD . You can
use this function to define conflict triggers to always favor a trusted source node.

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation (see description of
individual trigger types).

bdr.ri_fkey_on_del_trigger

When called as a BEFORE trigger, this function uses FOREIGN KEY information to avoid FK anomalies.

Synopsis

30.14.3 Stream triggers row variables

TG_NAME

Data type name. This variable contains the name of the trigger actually fired. The actual trigger name has a '_bdrt' or '_bdrc' suffix (depending on trigger type)
compared to the name provided during trigger creation.

TG_WHEN

Data type text. This variable says BEFORE for both conflict and transform triggers. You can get the stream trigger type by calling the
bdr.trigger_get_type() information function. See bdr.trigger_get_type.

bdr.trigger_get_conflict_type()

bdr.trigger_get_origin_node_id(row_id text)

bdr.ri_fkey_on_del_trigger()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 418

TG_LEVEL

Data type text: a string of ROW .

TG_OP

Data type text: a string of INSERT , UPDATE , or DELETE identifying the operation for which the trigger was fired.

TG_RELID

Data type oid: the object ID of the table that caused the trigger invocation.

TG_TABLE_NAME

Data type name: the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name: the name of the schema of the table that caused the trigger invocation. For partitioned tables, this is the name of the root table.

TG_NARGS

Data type integer: the number of arguments given to the trigger function in the bdr.create_conflict_trigger() or
bdr.create_transform_trigger() statement.

TG_ARGV[]

Data type array of text: the arguments from the bdr.create_conflict_trigger() or bdr.create_transform_trigger() statement. The index
counts from 0. Invalid indexes (less than 0 or greater than or equal to TG_NARGS) result in a NULL value.

30.15 Internal catalogs and views

Catalogs and views are presented here in alphabetical order.

bdr.ddl_epoch

An internal catalog table holding state per DDL epoch.

bdr.ddl_epoch columns

Name Type Description

ddl_epoch int8 Monotonically increasing epoch number

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 419

origin_node_id oid Internal node ID of the node that requested creation of this epoch

epoch_consume_timeout timestamptz Timeout of this epoch

epoch_consumed boolean Switches to true as soon as the local node has fully processed the epoch

epoch_consumed_lsn boolean LSN at which the local node has processed the epoch

Name Type Description

bdr.event_history

Internal catalog table that tracks cluster membership events for a given PGD node. Specifically, it tracks:

Node joins (to the cluster)
Raft state changes (i.e. whenever the node changes its role in the consensus protocol - leader, follower or candidate to leader) - see Monitoring Raft
Consensus
Whenever a worker has errored out (see bdr.workers and Monitoring PGD Replication Workers)

bdr.event_history columns

Name Type Description

event_node_id oid The ID of the node to which the event refers to

event_type int The type of the event (a node, raft or worker related event)

event_sub_type int The sub-type of the event, i.e. if it's a join, a state change or an error

event_source text The name of the worker process where the event was sourced

event_time timestamptz The timestamp at which the event occurred

event_text text A textual representation of the event (e.g. the error of the worker)

event_detail text A more detailed description of the event (for now, only relevant for worker
errors)

bdr.event_summary

A view of the bdr.event_history catalog that display the information in a more human-friendly format. Specifically, it displays the event types and sub-types
as textual representations, rather than integers.

bdr.node_config

An internal catalog table with per node configuration options.

bdr.node_config columns

Name Type Description

node_id oid The node id

node_route_priority int Priority assigned to this node

node_route_fence boolean Switch to fence this node

node_route_writes boolean Switch to allow writes

node_route_reads boolean Switch to allow reads

node_route_dsn text The interface of this node

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 420

bdr.node_group_config

An internal catalog table with per node group configuration options.

bdr.node_group_config columns

Name Type Description

node_group_id oid The node group id

route_writer_max_lag bigint Maximum write lag accepted

route_reader_max_lag bigint Maximum read lag accepted

route_writer_wait_flush boolean Switch if we need to wait for the flush

bdr.node_group_routing_config_summary

Per node group routing configuration options.

bdr.node_group_routing_info

An internal catalog table holding current routing information for a proxy.

bdr.node_group_routing_info columns

Name Type Description

node_group_id oid The node group id tha this proxy uses

write_node_id oid Current write node

prev_write_node_id oid Previous write node

read_node_ids oid[] List of read nodes IDs

bdr.node_group_routing_summary

A view of bdr.node_group_routing_info catalog which shows the information in more friendly way

bdr.node_routing_config_summary

Per node routing configuration options.

bdr.proxy_config

An internal catalog table holding proxy specific configurations.

bdr.proxy_config columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 421

Name Type Description

proxy_name name The name of the proxy

node_group_id oid The node group id that this proxy uses

listen_port int Port that the proxy uses

max_client_conn int Number of maximum client connections that the proxy
accepts

max_server_conn int Number of maximum connections that the server accepts

server_conn_timeout interval Timeout for the server connections

server_conn_keepalive interval Interval between the server connection keep alive

fallback_group_timeout interval Timeout needed for the fallback

fallback_group_ids oid[] List of group IDs to be used for the fallback

listen_addrs text[] Listen address

bdr.proxy_config_summary

Per proxy instance specific configuration options.

bdr.sequence_kind

An internal state table storing the type of each non-local sequence. We recommend the view bdr.sequences for diagnostic purposes.

bdr.sequence_kind columns

Name Type Description

seqid oid Internal OID of the sequence

seqkind char Internal sequence kind ('l'=local,'t'=timeshard,'s'=snowflakeid,'g'=galloc)

30.16 Internal system functions

Listed below are internal system functions. Many are used in the creation of various views and we recommend that you do not use the functions directly, but rather
use the views that they serve.

General internal functions

bdr.bdr_get_commit_decisions

Convenience routine to inspect shared memory state

Synopsis

bdr.bdr_get_commit_decisions(dbid OIDOID,
 origin_node_id
OIDOID,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 422

bdr.bdr_track_commit_decision

Save the transaction commit status in the shared memory hash table. This is used by the upgrade scripts to transfer commit decisions saved in
bdr.node_pre_commit catalog to the shared memory hash table. This will also be logged to the WAL and hence can be reloaded from WAL.

Synopsis

bdr.consensus_kv_fetch

Fetch value from the consistent KV Store in JSON format.

Synopsis

Parameters

key — An arbitrary key to fetch.

Notes

This is an internal function, mainly used by HARP.

WarningWarning

Don't use this function in user applications.

bdr.consensus_kv_store

Stores value in the consistent KV Store.

Returns timestamp of the value expiration time. This depends on ttl . If ttl is NULL , then this returns infinity . If the value was deleted, it returns -
infinity .

Synopsis

 origin_xid xid,
 local_xid xid,
 decision
"char",
 decision_ts
timestamptz,
 is_camo boolean)

bdr.bdr_track_commit_decision(OIDOID, xid, xid, "char", timestamptz, boolean);

bdr.consensus_kv_fetch(ININ keykey text) RETURNS jsonb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 423

Parameters

key — An arbitrary unique key to insert, update, or delete.
value — JSON value to store. If NULL, any existing record is deleted.
prev_value — If set, the write operation is done only if the current value is equal to prev_value .
ttl — Time to live of the new value, in milliseconds.

Notes

This is an internal function, mainly used by HARP.

WarningWarning

Don't use this function in user applications.

bdr.decode_message_payload

PGD message payload function that decodes the consensus payloads to a more human-readable output.Used primarily by the
bdr.global_consensus_journal_details debug view.

bdr.decode_message_response_payload

PGD message payload function that decodes the consensus payloads to a more human-readable output. Used primarily by the
bdr.global_consensus_journal_details debug view.

bdr.difference_fix_origin_create

Creates a replication origin with a given name passed as an argument but adding a bdr_ prefix. It returns the internal id of the origin. This performs the same
functionality as pg_replication_origin_create() , except this requires bdr_superuser rather than postgres superuser permissions.

bdr.difference_fix_session_reset

Marks the current session as not replaying from any origin, essentially resetting the effect of bdr.difference_fix_session_setup() . It returns void. This
function has the same functionality as pg_replication_origin_session_reset() except this function requires bdr_superuser rather than postgres
superuser permissions.

Synopsis

bdr.difference_fix_session_setup

bdr.consensus_kv_store(keykey text, value
jsonb,
 prev_value jsonb DEFAULTDEFAULT NULLNULL, ttl int DEFAULTDEFAULT
NULLNULL)

bdr.difference_fix_session_reset()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 424

Marks the current session as replaying from the current origin. The function uses the pre-created bdr_local_only_origin local replication origin implicitly
for the session. It allows replay progress to be reported and returns void. This function performs the same functionality as
pg_replication_origin_session_setup() except that this function requires bdr_superuser rather than postgres superuser permissions. The earlier

form of the function, bdr.difference_fix_session_setup(text) , was deprecated and will be removed in upcoming releases.

Synopsis

bdr.difference_fix_xact_set_avoid_conflict

Marks the current transaction as replaying a transaction that committed at LSN '0/0' and timestamp '2000-01-01'. This function has the same functionality as
pg_replication_origin_xact_setup('0/0', '2000-01-01') except this requires bdr_superuser rather than postgres superuser permissions.

Synopsis

bdr.drop_node

Drops a node.

WarningWarning

This function isn't intended for regular use. Execute it only if instructed by Technical Support.

This function removes the metadata for a given node from the local database. The node can be either:

The local node, in which case all the node metadata is removed, including information about remote nodes.
A remote node, in which case only metadata for that specific node is removed.

Synopsis

Parameters

node_name — Name of an existing node.
cascade — Deprecated, will be removed in the future.
force — Circumvents all sanity checks and forces the removal of all metadata for the given PGD node despite a possible danger of causing

inconsistencies. Only Technical Support uses a forced node drop in case of emergencies related to parting.

Notes

Before you run this, part the node using bdr.part_node() .

This function removes metadata for a given node from the local database. The node can be the local node, in which case all the node metadata are removed,
including information about remote nodes. Or it can be the remote node, in which case only metadata for that specific node is removed.

bdr.difference_fix_session_setup()

bdr.difference_fix_xact_set_avoid_conflict()

bdr.drop_node(node_name text, cascadecascade boolean DEFAULTDEFAULT falsefalse, forceforce boolean DEFAULTDEFAULT falsefalse)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 425

NoteNote

PGD can have a maximum of 1024 node records (both ACTIVE and PARTED) at one time because each node has a unique sequence number assigned to it,
for use by snowflakeid and timeshard sequences. PARTED nodes aren't automatically cleaned up. If this becomes a problem, you can use this function to
remove those records.

bdr.get_global_locks

This function shows information about global locks held on the local node.

Used to implement the bdr.global_locks view to provide a more detailed overview of the locks.

bdr.get_node_conflict_resolvers

Displays a text string of all the conflict resolvers on the local node.

bdr.get_slot_flush_timestamp

Retrieves the timestamp of the last flush position confirmation for a given replication slot.

Used internally to implement the bdr.node_slots view.

bdr.internal_alter_sequence_set_kind

PGD internal function used internally for replication of the various function calls.

No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_replication_set_add_table

PGD internal function used internally for replication of the various function calls.

No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_replication_set_remove_table

PGD internal function used internally for replication of the various function calls.

No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_submit_join_request

Submits a consensus request for joining a new node.

Needed by the PGD group reconfiguration internal mechanisms.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 426

bdr.isolation_test_session_is_blocked

A helper function, extending (and actually invoking) the original pg_isolation_test_session_is_blocked with an added check for blocks on global
locks.

Used for isolation/concurrency tests.

bdr.local_node_info

This function displays information for the local node, needed by the PGD group reconfiguration internal mechanisms.

The view bdr.local_node_summary provides similar information useful for user consumption.

bdr.msgb_connect

Function for connecting to the connection pooler of another node, used by the consensus protocol.

bdr.msgb_deliver_message

Function for sending messages to another node's connection pooler, used by the consensus protocol.

bdr.node_catchup_state_name

Convert catchup state code in name

Synopsis

Parameters

catchup_state — Oid code of the catchup state.

bdr.node_kind_name

Return human friendly name of the node kind (data|standby|witness|subscriber-only)

bdr.peer_state_name

This function transforms the node state (node_state) into a textual representation and is used mainly to implement the bdr.node_summary view.

bdr.pg_xact_origin

bdr.node_catchup_state_name(catchup_state oidoid);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 427

Returns origin id of a given transaction.

Synopsis

Parameters

xid — Transaction id whose origin is returned,

bdr.request_replay_progress_update

Requests the immediate writing of a 'replay progress update' Raft message. It's used mainly for test purposes but can be also used to test if the consensus
mechanism is working.

bdr.reset_relation_stats

Returns a Boolean result after resetting the relation stats, as viewed by bdr.stat_relation .

bdr.reset_subscription_stats

Returns a Boolean result after resetting the statistics created by subscriptions, as viewed by bdr.stat_subscription .

bdr.resynchronize_table_from_node

Resynchronizes the relation from a remote node.

Synopsis

Parameters

node_name — The node from which to copy or resync the relation data.
relation — The relation to copy from the remote node.

Notes

This function acquires a global DML lock on the relation, truncates the relation locally, and copies data into it from the remote node.

The relation must exist on both nodes with the same name and definition.

The following are supported:

bdr.pg_xact_origin(xmin xid)

bdr.resynchronize_table_from_node(node_name name, relation
regclass)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 428

Resynchronizing partitioned tables with identical partition definitions
Resynchronizing partitioned table to nonpartitioned table and vice versa
Resynchronizing referenced tables by temporarily dropping and recreating foreign key constraints

After running the function on a referenced table, if the referenced column data no longer matches the referencing column values, it throws an error. After
resynchronizing the referencing table data, rerun the function.

Furthermore, it supports resynchronization of tables with generated columns by computing the generated column values locally after copying the data from remote
node.

Currently, row_filters are ignored by this function.

The bdr.resynchronize_table_from_node function can be executed only by the owner of the table, provided the owner has bdr_superuser privileges.

bdr.seq_currval

Part of the internal implementation of global sequence manipulation.

Invoked automatically when currval() is called on a galloc or snowflakeid sequence.

bdr.seq_lastval

Part of the internal implementation of global sequence manipulation.

Invoked automatically when lastval() is called on a galloc or snowflakeid sequence.

bdr.seq_nextval

Part of the internal implementation of global sequence increments.

Invoked automatically when nextval() is called on a galloc or snowflakeid sequence

bdr.show_subscription_status

Retrieves information about the subscription status and is used mainly to implement the bdr.subscription_summary view.

bdr.show_workers

Information related to the bdr workers.

Synopsis

bdr.show_workers(
 worker_pid int,
 worker_role
int,
 worker_role_name
text,
 worker_subid oidoid

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 429

bdr.show_writers

Function used in the bdr.writers view.

Task Manager Functions

bdr.taskmgr_set_leader

Request the given node to be the task manager leader node. The leader node is responsible for creating new tasks (currently only autopartition makes use of this
facility). A witness node, a logical standby or a subscriber-only node can't become a leader. Such requests will fail with an ERROR.

Synopsis

bdr.taskmgr_get_last_completed_workitem

Return the id of the last workitem successfully completed on all nodes in the cluster.

Synopsis

bdr.taskmgr_work_queue_check_status

Using this function, you can see the status of the background workers that are doing their job to generate and finish the tasks.

The status can be seen through these views: bdr.taskmgr_work_queue_local_status bdr.taskmgr_work_queue_global_status

Synopsis

Parameters

workid — The key of the task.
local — Check the local status only.

Notes

bdr.taskmgr_set_leader(node name, wait_for_completion boolean DEFAULTDEFAULT
truetrue);

bdr.taskmgr_get_last_completed_workitem();

bdr.taskmgr_work_queue_check_status(workid
bigint
 locallocal boolean DEFAULTDEFAULT falsefalse);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 430

Taskmgr workers are always running in the background, even before the bdr.autopartition function is called for the first time. If an invalid workid is
used, the function returns unknown . In-progress is the typical status.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 431

	1 EDB Postgres Distributed (PGD)
	Compatibility

	2 EDB Postgres Distributed release notes
	2.1 EDB Postgres Distributed 5.4.1 release notes
	Bug fixes

	2.2 EDB Postgres Distributed 5.4.0 release notes
	Highlights of EDB Postgres Distributed 5.4.0
	Compatibility
	Features
	Bug fixes

	2.3 EDB Postgres Distributed 5.3.0 release notes
	Highlights of EDB Postgres Distributed 5.3.0
	Compatibility
	Features
	Enhancements
	Bug fixes

	2.4 EDB Postgres Distributed 5.2.0 release notes
	Highlights of EDB Postgres Distributed 5.2.0

	2.5 EDB Postgres Distributed 5.1.0 release notes
	Highlights of EDB Postgres Distributed 5.1

	2.6 EDB Postgres Distributed 5.0.1 release notes
	2.7 EDB Postgres Distributed 5.0.0 release notes
	3 Known issues
	4 Terminology
	Asynchronous replication
	Commit scopes
	CAMO or commit-at-most-once
	Conflicts
	Consensus
	Cluster
	DDL (data definition language)
	DML (data manipulation language)
	Eager
	Eventual consistency
	Failover
	Group commit
	Immediate consistency
	Logical replication
	Node
	Node groups
	PGD cluster
	PGD node
	Physical replication
	Postgres cluster
	Quorum
	Replicated available fault tolerance (Raft)
	Read scalability
	Subscription
	Switchover
	Synchronous replication
	Subscriber-only nodes
	Two-phase commit (2PC)
	Vertical scaling or scale up
	Witness nodes
	Write leader
	Writer

	5 PGD overview
	Basic architecture
	Multiple groups
	Multiple masters
	Asynchronous, by default
	Mesh topology
	Logical replication
	Connection management
	High availability

	Architectural options and performance
	Always On architectures
	Supported Postgres database servers
	Characteristics affecting performance

	6 Introducing PGD quick starts
	Quick start
	Introducing PGD and TPA
	Selecting Docker, Linux hosts, or AWS quick starts
	Docker quick start
	Linux host quick start
	AWS quick start

	Further explorations with your cluster

	6.1 Deploying an EDB Postgres Distributed example cluster on Docker
	Introducing TPA and PGD
	Prerequisites
	RAM requirements
	Free disk space
	The curl utility
	Docker Engine

	Preparation
	EDB account
	Setting environment variables
	Configure the repository

	Installing Trusted Postgres Architect (TPA)
	Linux environment
	Install the TPA package
	Configuring TPA
	Testing the TPA installation

	Installing PGD using TPA
	Generating a configuration file
	Provisioning the cluster
	Deploying the cluster

	Connecting to the cluster
	Using PGD CLI

	Explore your cluster

	6.2 Deploying an EDB Postgres Distributed example cluster on Linux hosts
	Introducing TPA and PGD
	Prerequisites
	Configure your Linux hosts
	Set up a host admin user

	Preparation
	EDB account
	Setting environment variables
	Configure the repository

	Installing Trusted Postgres Architect (TPA)
	Linux environment
	Install the TPA package
	Configuring TPA
	Testing the TPA installation

	Installing PGD using TPA
	Generating a configuration file

	Editing your configuration
	Provisioning the cluster
	Deploy your cluster
	Connecting to the cluster
	Using PGD CLI

	Explore your cluster

	6.3 Deploying an EDB Postgres Distributed example cluster on AWS
	Introducing TPA and PGD
	Preparation
	EDB account
	Install curl
	Setting environment variables
	Configure the repository

	Installing Trusted Postgres Architect (TPA)
	Linux environment
	Install the TPA package
	Configuring TPA
	Testing the TPA installation
	AWS Credentials

	Installing PGD using TPA
	Generating a configuration file

	Provisioning the cluster:
	Deploying the cluster
	Connecting to the cluster
	Using PGD CLI

	Explore your cluster

	6.4 Deploying an EDB Postgres Distributed example cluster on Azure and Google cloud platforms
	Deploying on Azure and Google clouds

	6.5 Connecting to your database
	Getting credentials
	Creating a .pgpass file
	Establishing the IP address
	Docker
	AWS
	Linux hosts

	Ensure you can connect to your IP addresses
	Linux hosts and Docker
	AWS

	Getting an appropriate Postgres client
	Connecting the client to the cluster
	Using proxy failover to connect the client to the cluster
	Creating a Connection URL
	Making a Java Connection URL

	Moving On

	6.6 Exploring failover handling with PGD
	Your quick started configuration
	Installing xpanes
	Connecting to the four servers
	Setting up a monitor
	Creating pings
	Displaying the write leader
	Losing a node
	Showing node states
	Monitoring lag
	Restarting a node
	Proxy failover
	Other scenarios
	Further reading

	6.7 Exploring conflict handling with PGD
	Your quick start configuration
	Installing xpanes
	Connecting to four servers
	Preparing for conflicts
	Monitoring conflicts
	Creating a conflict
	Creating an update conflict
	Other conflicts

	6.8 Next steps with PGD
	Going further with your PGD cluster
	Architecture
	Postgres versions
	Read On

	Deprovisioning the cluster

	7 Planning your PGD deployment
	7.1 Choosing your architecture
	Standard EDB Always On architectures
	Architecture details
	Always On Single Location
	Always On multi-location

	Choosing your architecture
	Adding flexibility to the standard architectures

	7.2 Choosing a Postgres distribution
	7.3 Choosing your deployment method
	7.4 Other considerations
	Data consistency
	Deployment
	Sizing considerations
	Clocks and timezones

	7.5 Limitations
	Nodes
	Multiple databases on single instances
	Durability options (Group Commit/CAMO)
	Mixed PGD versions
	Other limitations

	8 Deploying and configuring EDB Postgres Distributed
	8.1 Manual deployment and configuration of PGD
	8.1.1 Deploying PGD manually
	8.1.1.1 Step 1 - Provisioning hosts
	Provisioning hosts
	Configuring hosts
	Create an admin user
	Ensure networking connectivity

	Worked example

	8.1.1.2 Step 2 - Installing Postgres
	Installing Postgres
	Worked example
	EDB account
	1: Configuring repositories
	2: Install Postgres

	8.1.1.3 Step 3 - Configuring PGD repositories
	Configuring PGD repositories
	Worked example
	Use your EDB account
	Set environment variables
	Configure the repository
	RHEL/Other RHEL-based

	8.1.1.4 Step 4 - Installing the PGD software
	Installing the PGD software
	Worked example
	Install the packages
	Ensure the database is initialized and started
	Configure the BDR extension
	Preload the BDR library
	Set the wal_level
	Enable commit timestamp tracking
	Increase max_worker_processes
	Add a password to the Postgres enterprisedb user
	Enable inter-node authentication in pg_hba.conf
	Enable authentication between nodes

	Restart the server
	Check the extension has been installed

	Create the replicated database

	Summaries
	Installing PGD for EDB Postgres Advanced Server
	Installing PGD for EDB Postgres Extended Server
	Summary: Installing PGD for EDB Postgres Extended Server 16

	Installing PGD for Postgresql
	Summary: Installing PGD for Postgresql 16

	8.1.1.5 Step 5 - Creating the PGD cluster
	Creating the PGD cluster
	Worked example
	Create connection strings for each node
	Preparing the first node
	Create the first node
	Create the top-level group
	Create a subgroup

	Adding the second node
	Create the second node
	Join the second node to the cluster

	Add the third node
	Create the third node
	Join the third node to the cluster

	8.1.1.6 Step 6 - Checking the cluster
	Checking the cluster
	Worked example
	Preparation
	Ensure the cluster is ready

	Create data
	On node-one, create a table
	On node-one, populate the table
	On node-one, monitor performance
	On node-one get a checksum

	Check data
	Log in to host-two's Postgres server
	On node-two, get a checksum
	Compare with the result from node-one
	Log in to host-three's Postgres server
	On node-three, get a checksum
	Compare with the result from node-one and node-two

	8.1.1.7 Step 7 - Configure proxies
	Configure proxies
	Configure the cluster for proxies
	Configure each host as a proxy

	Worked example
	Preparing for proxies
	Create a pgdproxy user on the database
	Configure proxy routes to each node
	Create a pgdproxy user on each host
	Configure the systemd service on each host
	Create a proxy config file for each host
	Install a PGD proxy configuration on each host
	Restart the service
	Test the proxy

	8.1.1.8 Step 8 - Using PGD CLI
	Using PGD CLI
	Configuring and connecting PGD CLI
	Use PGD CLI to explore the cluster

	Worked example
	Ensure PGD CLI is installed
	Create a configuration file
	Install the configuration file
	Run PGD CLI
	Using PGD CLI to explore the cluster
	Check the health of the cluster
	Show the nodes in the cluster
	Show the proxies in the cluster
	Show the groups in the cluster
	Set a group option
	Switching write leader

	8.2 Deployment and management with TPA
	8.2.1 Deploying PGD using TPA
	Prerequisite: Install TPA

	8.2.1.1 Configuring a PGD cluster with TPA
	Common configuration options
	Owner
	Platform options

	Subnet selection
	Disk space
	Distribution
	Repositories
	Software versions
	Hostnames
	Locations

	8.2.1.2 Provisioning, deploying, and testing
	Provision
	Deploy
	Test

	8.3 Deploying and configuring PGD on Kubernetes
	8.4 Deploying and configuring PGD on EDB BigAnimal
	9 Application use
	9.1 Application behavior
	Replication behavior
	Truncate
	Row-level locks
	Sequences
	Binary objects
	Rules
	Base tables only
	Partitioned tables
	Triggers
	Toast
	Other restrictions

	9.2 DML and DDL replication and nonreplication
	DML replication
	DDL replication
	Nonreplicated statements

	9.3 Nodes with differences
	Replicating between nodes with differences
	Comparison between nodes with differences
	Replicating between different release levels

	9.4 General rules for applications
	Background
	Rules for applications

	9.5 Timing considerations and synchronous replication
	9.6 Use of table access methods (TAMs) in PGD
	9.7 Feature compatibility
	Server feature/commit scope interoperability
	Notes

	Commit scope/commit scope interoperability
	Notes

	10 Node management
	10.1 Node types
	Data nodes
	Witness nodes
	Logical standby nodes
	Subscriber-only nodes

	10.2 Groups and subgroups
	Groups
	Sub-groups

	10.3 Creating and joining PGD groups
	Creating and joining PGD groups

	10.4 Witness nodes
	Witness Nodes within PGD groups or regions
	Witness Node outside regions

	10.5 Logical standby nodes
	10.6 Subscriber-only nodes and groups
	Subscriber-only nodes
	Subscriber-only groups

	10.7 Viewing PGD topology
	Listing PGD groups
	Using pgd-cli
	Using SQL

	Listing nodes in a PGD group
	Using pgd-cli
	Using SQL

	10.8 Removing nodes and groups
	Removing a node from a PGD group
	Removing a whole PGD group

	10.9 Joining a heterogeneous cluster
	10.10 Connection DSNs and SSL (TLS)
	10.11 Decoding worker
	Enabling
	Disabling
	LCR file names

	10.12 Replication slots created by PGD
	Group replication slot
	Hashing long identifiers

	10.13 Node restart and down node recovery
	10.14 Maintenance commands through proxies
	Maintenance and performance
	Maintenance and proxies
	Maintenance commands
	A note on node names
	Finding the write leader
	Using bdr.run_on_nodes()
	Formatting bdr.run_on_nodes() output
	Defining a function for maintenance

	11 Postgres configuration
	Postgres settings
	Time-based snapshots
	snapshot_timestamp

	Max prepared transactions
	max_prepared_transactions

	12 DDL replication
	12.1 DDL overview
	Replicated DDL
	Differences from PostgreSQL
	Executing DDL on PGD systems

	12.2 DDL replication options
	12.3 DDL locking details
	The global DDL lock
	The global DML lock

	12.4 Managing DDL with PGD replication
	Minimizing the impact of DDL
	Handling DDL with down nodes
	Statement-specific DDL replication concerns

	12.5 DDL command handling matrix
	Command matrix
	Command Notes
	ALTER SEQUENCE
	ALTER TABLE
	ALTER TABLE disallowed commands
	ALTER TABLE locking
	ALTER TABLE examples

	ALTER TYPE
	COMMENT ON
	CREATE PROFILE or ALTER PROFILE
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TABLE AS and SELECT INTO
	EXPLAIN
	EXPLAIN ANALYZE Replication
	EXPLAIN ANALYZE Locking

	GRANT and REVOKE
	LOCK TABLE
	SECURITY LABEL
	TRUNCATE Replication
	TRUNCATE Locking

	12.6 DDL and role manipulation statements
	12.7 Workarounds for DDL restrictions
	Adding a CONSTRAINT
	Adding a column
	Changing a column's type
	Changing other types

	12.8 PGD functions that behave like DDL
	13 Security and roles
	13.1 Roles
	13.2 Role management
	Role rule - No un-replicated roles
	Roles for new nodes
	Connections and roles

	13.3 PGD predefined roles
	bdr_superuser
	bdr_read_all_stats
	bdr_monitor
	bdr_application
	bdr_read_all_conflicts

	13.4 Roles and replication
	DDL and DML replication and users
	Differing Table Ownership
	Replication and row-level security
	bdr_superuser role and replication
	Privilege restrictions
	Foreign key privileges

	13.5 Access control
	Catalog tables
	PGD functions and operators
	Granting privileges on catalog objects
	Triggers

	14 Sequences
	PGD global sequences
	SnowflakeId sequences
	Timeshard sequences

	Globally allocated range sequences
	Converting a local sequence to a galloc sequence

	UUIDs, KSUUIDs, and other approaches
	UUIDs
	KSUUIDs
	Step and offset sequences
	Composite keys

	See also

	15 Durability
	Introducing
	Commit scope kinds
	Working with commit scopes

	15.1 An overview of durability options
	Overview

	15.2 Durability terminology
	Durability terminology
	Nodes

	15.3 Commit scopes
	Commit scope structure
	How a commit scope is selected
	Creating a Commit Scope
	Using a commit scope
	Origin groups

	15.4 Commit scope rules
	The commit scope group
	The confirmation Level
	The Commit Scope kind
	GROUP COMMIT
	CAMO
	LAG CONTROL
	SYNCHRONOUS_COMMIT

	Combining rules

	15.5 Comparing durability options
	Comparison
	ON RECEIVED
	ON REPLICATED
	ON DURABLE
	ON VISIBLE

	15.6 Group Commit
	Overview
	Example
	Requirements
	Limitations
	Configuration
	Confirmation
	Behavior
	Commit decisions
	Conflict resolution
	Aborts
	Transaction Reconciliation

	15.7 Commit At Most Once
	Overview
	Requirements
	Configuration
	Confirmation
	Limitations
	Failure scenarios
	Data persistence at receiver side
	Asynchronous mode
	Example
	With asynchronous mode
	Without asynchronous mode

	Application use
	Overview and requirements
	Working with the CAMO partner
	Connection pools and proxies

	CAMO limitations
	Performance implications
	Client application testing

	15.8 Lag Control
	Overview
	Background
	Requirements
	Configuration
	Confirmation
	Transaction application
	Limitations
	Caveats
	Meeting organizational objectives
	Lag Control and Extensions

	15.9 PGD Synchronous Commit
	Overview
	Example
	Configuration
	Confirmation
	Details

	15.10 Administering
	Planned shutdown and restarts

	15.11 Legacy synchronous replication using PGD
	Usage
	Comparison
	Postgres configuration parameters
	Migration to commit scopes

	15.12 Limitations
	General limitations
	Group Commit
	Eager
	CAMO

	15.13 Internal timing of operations
	16 Consistency
	16.1 Conflicts
	How conflicts happen
	Types of conflict
	PRIMARY KEY or UNIQUE conflicts
	INSERT/INSERT conflicts
	INSERT operations that violate multiple UNIQUE constraints
	UPDATE/UPDATE conflicts
	UPDATE conflicts on the PRIMARY KEY
	UPDATE operations that violate multiple UNIQUE constraints
	UPDATE/DELETE conflicts
	INSERT/UPDATE conflicts
	INSERT/DELETE conflicts
	DELETE/DELETE conflicts
	Conflicts with three or more nodes

	Foreign key constraint conflicts
	TRUNCATE conflicts
	Exclusion constraint conflicts
	Data conflicts for roles and tablespace differences
	Lock conflicts and deadlock aborts
	Divergent conflicts
	TOAST support details

	Avoiding or tolerating conflicts
	Conflict detection
	Origin conflict detection
	Row version conflict detection
	bdr.alter_table_conflict_detection
	Synopsis
	Parameters
	Notes

	List of conflict types

	Conflict resolution
	bdr.alter_node_set_conflict_resolver
	Synopsis
	Parameters
	Notes

	List of conflict resolvers
	Default conflict resolvers
	List of conflict resolutions

	Conflict logging
	bdr.alter_node_set_log_config
	Synopsis
	Parameters
	Notes
	Listing conflict logging configurations
	Logging conflicts to a table

	Conflict reporting

	Data verification with LiveCompare

	16.2 Column-level conflict detection
	Enabling and disabling column-level conflict resolution
	Example
	Listing table with column-level conflict resolution
	bdr.column_timestamps_create
	Synopsis
	Parameters

	DDL locking
	Current versus commit timestamp
	Inspecting column timestamps
	Handling column conflicts using CRDT data types
	Notes

	16.3 Conflict-free replicated data types
	State-based and operation-based CRDTs
	Operation-based CRDT types (CmCRDT)
	State-based CRDT types (CvCRDT)

	Disk-space requirements
	CRDT types versus conflicts handling
	CRDT types versus conflict reporting
	Resetting CRDT values
	Implemented CRDT data types
	grow-only counter (crdt_gcounter)
	grow-only sum (crdt_gsum)
	positive-negative counter (crdt_pncounter)
	positive-negative sum (crdt_pnsum)
	delta counter (crdt_delta_counter)
	delta sum (crdt_delta_sum)

	16.4 Eager conflict resolution
	Usage
	Error handling
	Effects of Eager Replication in general
	Increased abort rate

	Effects of MAJORITY and ALL node replication in general
	Increased commit latency

	17 Parallel Apply
	What is Parallel Apply?
	Configuring Parallel Apply
	When to use Parallel Apply
	Monitoring Parallel Apply
	Disabling Parallel Apply
	Deadlock mitigation
	Parallel Apply Support

	18 Replication sets
	Using replication sets
	Behavior of partitioned tables
	Behavior with foreign keys
	Replication set membership
	Listing replication sets
	DDL replication filtering
	Selective Replication Example
	Cluster Configuration
	Application Requirements
	Creating tables
	Viewing groups and replication sets
	Adding tables to replication sets
	Testing Selective Replication

	19 Application connection management
	Configuration

	19.1 EDB Postgres Distributed Proxy
	How it works
	Consensus grace period
	Network partition example

	Multi-host connection strings

	Managing PGD Proxy
	Proxy health check
	Readiness
	Liveness

	Proxy log location
	syslog

	19.2 Installing PGD Proxy
	Installing PGD Proxy
	Installing through TPA
	Configuration
	PGD Proxy user
	PGD Proxy service

	Installing manually

	19.3 Proxies, Raft, and Raft subgroups
	Proxy routing
	Global routing
	Local routing
	More information

	19.3.1 Creating Raft subgroups using TPA
	Creating Raft subgroups using TPA
	The configuration file

	19.3.2 Working with Raft subgroups and PGD CLI
	Viewing nodes with pgd
	Viewing groups (and subgroups) with pgd

	19.3.3 Migrating to Raft subgroups
	Migrating to Raft subgroups (using SQL only)
	Enabling subgroup Raft node group (using SQL only)

	19.3.4 Raft elections in depth
	Node interaction
	Proxy interaction

	20 Backup and recovery
	Backup
	pg_dump
	Physical backup
	Eventual consistency
	Point-in-time recovery (PITR)

	Restore
	EDB Postgres Distributed cluster failure or seeding a new cluster from a backup
	Cleanup of PGD metadata
	Cleanup of replication origins
	Cleanup of replication slots

	21 Monitoring
	21.1 OpenTelemetry integration
	OTEL and OLTP compatibility
	Metrics collection
	Generic metrics
	Replication metrics
	Consensus metric

	Tracing
	TLS support

	21.2 Monitoring through SQL
	Monitoring overview
	Monitoring node join and removal
	Monitoring Replication Peers
	Monitoring outgoing replication
	Monitoring incoming replication
	Monitoring WAL senders using LCR

	Monitoring PGD replication workers
	Monitoring PGD writers
	Monitoring global locks
	Monitoring conflicts
	Apply statistics
	Standard PostgreSQL statistics views
	Monitoring PGD versions
	Monitoring Raft consensus
	Monitoring replication slots
	Monitoring transaction COMMITs

	22 EDB Postgres Distributed Command Line Interface
	22.1 Installing PGD CLI
	Installing automatically with Trusted Postgres Architect (TPA)
	Installing manually on Linux
	Obtain your EDB subscription token
	Set the EDB_SUBSCRIPTION_TOKEN environment variable
	Install on Debian or Ubuntu
	Install on RHEL, Rocky, AlmaLinux, or Oracle Linux

	22.2 Using PGD CLI
	What is the PGD CLI?
	Running the PGD CLI
	Passing a database connection string
	Specifying a configuration file
	Specifying the output format
	Accessing the command line help

	22.3 Configuring PGD CLI
	PGD CLI and database connection strings
	Configuring the database to connect to
	Using database connection strings in the command line
	Using a configuration file

	22.4 Discovering connection strings
	PGD CLI and database connection strings
	Getting your database connection string
	For a TPA-deployed PGD cluster
	For an EDB BigAnimal distributed high-availability cluster
	For a cluster deployed with EDB PGD for Kubernetes

	22.5 Command reference
	Synopsis
	Options
	See also

	22.5.1 check-health
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.2 create-proxy
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.3 delete-proxy
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.4 set-group-options
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.5 set-node-options
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.6 set-proxy-options
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.7 show-clockskew
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.8 show-events
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.9 show-groups
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.10 show-nodes
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.11 show-proxies
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.12 show-raft
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.13 show-replslots
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.14 show-subscriptions
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.15 show-version
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.16 switchover
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.17 verify-cluster
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	22.5.18 verify-settings
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	23 Transaction streaming
	PGD enhancements
	Caveats

	Configuration
	Node configuration using bdr.default_streaming_mode
	Group configuration using bdr.alter_node_group_config()
	Configuration setting effects

	Monitoring

	24 Testing and tuning PGD clusters
	Trusted Postgres Architect
	pgd_bench
	Notes on pgd_bench usage
	Performance testing and tuning

	25 Stream triggers
	Trigger execution during Apply
	Missing-column conflict resolution
	Data loss and divergence risk

	Terminology of row-types
	Conflict triggers
	Transform triggers
	Row contents
	Execution order
	Stream triggers examples

	26 PGD AutoPartition
	Auto creation of partitions
	AutoPartition Examples
	RANGE-partitioned tables
	Stopping automatic creation of partitions
	Waiting for partition creation
	Finding a partition
	Enabling or disabling AutoPartitioning

	27 Explicit two-phase commit (2PC)
	Use

	28 Timestamp-based snapshots
	29 Upgrading
	Upgrading PGD
	Upgrading Postgres
	Other upgrades

	29.1 Upgrading PGD clusters with TPA
	Minor and major PGD upgrades
	Pre-requisites
	Upgrading
	TPA's automated rolling upgrade procedure
	TPA upgrades - step by step

	29.2 Upgrading PGD clusters manually
	Upgrade planning
	Rolling upgrade considerations
	Rolling server software upgrades
	Rolling upgrade using node join
	Upgrading a CAMO-enabled cluster

	Upgrade preparation
	Server software upgrade
	BDR extension upgrade
	Stop Postgres
	Upgrade packages
	Start Postgres

	Postgres upgrade
	Minor version Postgres upgrade
	Major version Postgres upgrade

	Upgrade check and validation
	Moving from HARP to PGD Proxy

	29.3 Supported PGD upgrade paths
	Upgrading within version 5
	Upgrading from version 4 to version 5
	Upgrading from version 3.7 to version 5

	29.4 Compatibility changes
	Connection routing
	Commit At Most Once
	Eager All-Node Replication
	Lag Control
	Catalogs

	29.5 In-place Postgres major version upgrades
	Terminology
	Precautions
	Usage
	bdr_pg_upgrade command-line
	Synopsis
	Options
	Environment variables

	Example
	Steps performed
	PGD Postgres checks
	pg_upgrade steps
	PGD post-upgrade steps

	29.6 Application schema upgrades
	Rolling application schema upgrades

	29.7 Performing a Postgres major version rolling upgrade on a PGD cluster built with TPA
	Upgrading Postgres major versions
	Prepare the upgrade
	Perform the upgrade on each node
	Reconcile the upgrade with TPA

	Worked example
	Confirm the current Postgres version
	Verify that the target node isn't the write leader
	Perform a planned switchover

	Stop Postgres on the target node
	Install PGD and utilities
	Initialize the new Postgres instance
	Migrate configuration to the new Postgres version
	Verify the Postgres service is inactive
	Swap PGDATA directories for version upgrade
	Verify upgrade feasibility
	Execute the Postgres major version upgrade
	Update the Postgres service configuration
	Restart Postgres
	Validate the new Postgres version
	Clean up post-upgrade
	Next steps
	Check Postgres versions across the cluster
	Reconcile with TPA

	30 PGD reference
	User visible catalogs and views
	System functions
	Version information functions
	System information functions
	System and progress information parameters
	Consensus function
	Utility functions
	Global advisory locks
	Monitoring functions
	CAMO functions
	Commit Scope functions

	PGD settings
	Conflict handling
	Global sequence parameters
	DDL handling
	Global locking
	Node management
	Generic replication
	CRDTs
	Commit Scope
	Commit At Most Once
	Transaction streaming
	Lag Control
	Timestamp-based snapshots
	Monitoring and logging
	Decoding Worker
	Connectivity settings
	Internal settings - Raft timeouts
	Internal settings - Other Raft values
	Internal settings - Other values

	Node management
	Node management interfaces
	Routing functions
	Commit scopes
	Replication set management
	Replication set membership
	DDL replication filtering
	Testing and tuning commands
	Global sequence management interfaces
	Sequence functions
	KSUUID v2 Functions
	KSUUID v1 functions

	Autopartition
	Stream triggers reference
	Stream triggers manipulation interfaces
	Stream triggers row functions
	Stream triggers row variables
	Internal catalogs and views
	Internal system functions
	General internal functions
	Task Manager Functions

	30.1 User visible catalogs and views
	bdr.camo_decision_journal
	bdr.camo_decision_journal columns

	bdr.commit_scopes
	bdr.commit_scopes columns

	bdr.conflict_history
	bdr.conflict_history columns

	bdr.conflict_history_summary
	bdr.conflict_history_summary columns

	bdr.consensus_kv_data
	bdr.consensus_kv_data Columns

	bdr.crdt_handlers
	bdr.crdt_handlers Columns

	bdr.ddl_replication
	bdr.ddl_replication columns

	bdr.depend
	bdr.global_consensus_journal
	bdr.global_consensus_journal columns

	bdr.global_consensus_journal_details
	bdr.global_consensus_journal_details columns

	bdr.global_consensus_response_journal
	bdr.global_consensus_response_journal columns

	bdr.global_lock
	bdr.global_lock columns

	bdr.global_locks
	bdr.global_locks columns

	bdr.group_camo_details
	bdr.group_camo_details columns

	bdr.group_raft_details
	bdr.group_raft_details columns

	bdr.group_replslots_details
	bdr.group_replslots_details columns

	bdr.group_subscription_summary
	bdr.group_subscription_summary columns

	bdr.group_versions_details
	bdr.group_versions_details columns

	bdr.local_consensus_snapshot
	bdr.local_consensus_snapshot columns

	bdr.local_consensus_state
	bdr.local_consensus_state columns

	bdr.local_node
	bdr.local_node columns

	bdr.local_node_summary
	bdr.local_sync_status
	bdr.local_sync_status columns

	bdr.node
	bdr.node columns

	bdr.node_catchup_info
	bdr.node_catchup_info columns

	bdr.node_catchup_info_details
	bdr.node_conflict_resolvers
	bdr.node_conflict_resolvers columns

	bdr.node_group
	bdr.node_group columns

	bdr.node_group_replication_sets
	bdr.node_group_replication_sets columns

	bdr.node_group_summary
	bdr.node_group_summary columns

	bdr.node_local_info
	bdr.node_local_info columns

	bdr.node_log_config
	bdr.node_log_config columns

	bdr.node_peer_progress
	bdr.node_peer_progress columns

	bdr.node_replication_rates
	bdr.node_replication_rates columns

	bdr.node_slots
	bdr.node_slots columns

	bdr.node_summary
	bdr.node_summary columns

	bdr.queue
	bdr.queue columns

	bdr.replication_set
	bdr.replication_set columns

	bdr.replication_set_table
	bdr.replication_set_table columns

	bdr.replication_set_ddl
	bdr.replication_set_ddl Columns

	bdr.replication_sets
	bdr.replication_sets columns

	bdr.schema_changes
	bdr.schema_changes columns

	bdr.sequence_alloc
	bdr.sequence_alloc columns

	bdr.sequences
	bdr.sequences columns

	bdr.stat_activity
	bdr.stat_relation
	bdr.stat_relation columns

	bdr.stat_subscription
	bdr.stat_subscription columns

	bdr.subscription
	bdr.subscription columns

	bdr.subscription_summary
	bdr.subscription_summary columns

	bdr.tables
	bdr.tables columns

	bdr.taskmgr_work_queue
	bdr.taskmgr_work_queue columns

	bdr.taskmgr_workitem_status
	bdr.taskmgr_workitem_status columns

	bdr.taskmgr_local_work_queue
	bdr.taskmgr_local_work_queue columns

	bdr.taskmgr_local_workitem_status
	bdr.taskmgr_local_workitem_status columns

	bdr.trigger
	bdr.trigger columns

	bdr.triggers
	bdr.workers
	bdr.workers Columns

	bdr.writers
	bdr.writers columns

	bdr.worker_tasks
	bdr.worker_tasks columns

	30.2 System functions
	Version information functions
	bdr.bdr_version
	bdr.bdr_version_num

	System information functions
	bdr.get_relation_stats
	bdr.get_subscription_stats

	System and progress information parameters
	bdr.local_node_id
	bdr.last_committed_lsn
	transaction_id
	bdr.is_node_connected
	Synopsis

	bdr.is_node_ready
	Synopsis

	Consensus function
	bdr.consensus_disable
	bdr.consensus_enable
	bdr.consensus_proto_version
	bdr.consensus_snapshot_export
	Synopsis

	bdr.consensus_snapshot_import
	Synopsis

	bdr.consensus_snapshot_verify
	Synopsis

	bdr.get_consensus_status
	bdr.get_raft_status
	bdr.raft_leadership_transfer
	Synopsis

	Utility functions
	bdr.wait_slot_confirm_lsn
	Synopsis
	Parameters

	bdr.wait_for_apply_queue
	Synopsis
	Parameters

	bdr.get_node_sub_receive_lsn
	Synopsis
	Parameters

	bdr.get_node_sub_apply_lsn
	Synopsis
	Parameters

	bdr.replicate_ddl_command
	Synopsis
	Parameters
	Notes

	bdr.run_on_all_nodes
	Synopsis
	Parameters
	Notes
	Example

	bdr.run_on_nodes
	Synopsis
	Parameters
	Notes

	bdr.run_on_group
	Synopsis
	Parameters
	Notes

	bdr.global_lock_table
	Synopsis
	Parameters
	Notes

	bdr.wait_for_xid_progress
	Synopsis
	Parameters
	Notes

	bdr.local_group_slot_name
	Example

	bdr.node_group_type
	Example

	bdr.alter_node_kind
	Synopsis
	Parameters

	bdr.alter_subscription_skip_changes_upto
	Synopsis
	Example

	Global advisory locks
	bdr.global_advisory_lock
	Synopsis
	parameters
	Synopsis
	parameters

	bdr.global_advisory_unlock
	Synopsis
	Parameters
	Synopsis
	Parameters

	Monitoring functions
	bdr.monitor_group_versions
	Synopsis
	Notes

	bdr.monitor_group_raft
	Synopsis
	Parameters
	Notes

	bdr.monitor_local_replslots
	Synopsis
	Notes

	bdr.wal_sender_stats
	Synopsis
	Output columns

	bdr.get_decoding_worker_stat
	Synopsis
	Output columns
	Notes

	bdr.lag_control
	Synopsis
	Output columns

	CAMO functions
	bdr.is_camo_partner_connected
	Synopsis
	Return value

	bdr.is_camo_partner_ready
	Synopsis
	Return value

	bdr.get_configured_camo_partner
	Synopsis

	bdr.wait_for_camo_partner_queue
	Synopsis

	bdr.camo_transactions_resolved
	Synopsis

	bdr.logical_transaction_status
	Synopsis
	Parameters
	Return value

	Commit Scope functions
	bdr.add_commit_scope
	Synopsis

	bdr.alter_commit_scope
	Synopsis

	bdr.remove_commit_scope
	Synopsis

	30.3 PGD settings
	Conflict handling
	bdr.default_conflict_detection

	Global sequence parameters
	bdr.default_sequence_kind

	DDL handling
	bdr.default_replica_identity
	bdr.ddl_replication
	bdr.role_replication
	bdr.ddl_locking
	bdr.truncate_locking

	Global locking
	bdr.global_lock_max_locks
	bdr.global_lock_timeout
	bdr.global_lock_statement_timeout
	bdr.global_lock_idle_timeout
	bdr.predictive_checks

	Node management
	bdr.replay_progress_frequency
	bdr.standby_slot_names

	Generic replication
	bdr.writers_per_subscription
	bdr.max_writers_per_subscription
	bdr.xact_replication
	bdr.permit_unsafe_commands
	bdr.batch_inserts
	bdr.maximum_clock_skew
	bdr.maximum_clock_skew_action
	bdr.accept_connections
	bdr.standby_slot_names
	bdr.standby_slots_min_confirmed
	bdr.writer_input_queue_size
	bdr.writer_output_queue_size
	bdr.min_worker_backoff_delay

	CRDTs
	bdr.crdt_raw_value

	Commit Scope
	bdr.commit_scope

	Commit At Most Once
	bdr.camo_local_mode_delay
	bdr.camo_enable_client_warnings

	Transaction streaming
	bdr.default_streaming_mode

	Lag Control
	bdr.lag_control_max_commit_delay
	bdr.lag_control_max_lag_size
	bdr.lag_control_max_lag_time
	bdr.lag_control_min_conforming_nodes
	bdr.lag_control_commit_delay_adjust
	bdr.lag_control_sample_interval
	bdr.lag_control_commit_delay_start

	Timestamp-based snapshots
	bdr.timestamp_snapshot_keep

	Monitoring and logging
	bdr.debug_level
	bdr.trace_level
	bdr.track_subscription_apply
	bdr.track_relation_apply
	bdr.track_apply_lock_timing

	Decoding Worker
	bdr.enable_wal_decoder
	bdr.receive_lcr
	bdr.lcr_cleanup_interval

	Connectivity settings
	bdr.global_connection_timeout
	bdr.global_keepalives
	bdr.global_keepalives_idle
	bdr.global_keepalives_interval
	bdr.global_keepalives_count
	bdr.global_tcp_user_timeout

	Internal settings - Raft timeouts
	bdr.raft_global_election_timeout
	bdr.raft_local_election_timeout
	bdr.raft_response_timeout

	Internal settings - Other Raft values
	bdr.raft_keep_min_entries
	bdr.raft_log_min_apply_duration
	bdr.raft_log_min_message_duration
	bdr.raft_group_max_connections

	Internal settings - Other values
	bdr.backwards_compatibility
	bdr.track_replication_estimates
	bdr.lag_tracker_apply_rate_weight

	30.4 Node management
	List of node states
	Node-management commands
	bdr_init_physical
	Synopsis
	Options
	Notes

	30.5 Node management interfaces
	bdr.alter_node_group_config
	Synopsis
	Parameters
	Notes

	bdr.alter_node_group_option
	Synopsis
	Parameters
	Return value
	Notes

	bdr.alter_node_interface
	Synopsis
	Parameters
	Notes

	bdr.alter_node_option
	Synopsis
	Parameters

	bdr.alter_subscription_enable
	Synopsis
	Parameters
	Notes

	bdr.alter_subscription_disable
	Synopsis
	Parameters
	Notes

	bdr.create_node
	Synopsis
	Parameters
	Notes

	bdr.create_node_group
	Synopsis
	Parameters
	Notes

	bdr.join_node_group
	Synopsis
	Parameters
	Notes

	bdr.part_node
	Synopsis
	Parameters
	Notes

	bdr.promote_node
	Synopsis
	Notes

	bdr.switch_node_group
	Synopsis
	Parameters
	Notes

	bdr.wait_for_join_completion
	Synopsis
	Parameters
	Notes

	30.6 Routing functions
	bdr.create_proxy
	Synopsis
	Parameters

	bdr.alter_proxy_option
	Synopsis
	Parameters

	bdr.drop_proxy
	Synopsis
	Parameters

	bdr.routing_leadership_transfer
	Synopsis
	Parameters

	30.7 Commit scopes
	Commit scope syntax
	Commit scope groups
	ANY
	ANY NOT
	MAJORITY
	MAJORITY NOT
	ALL
	ALL NOT

	Confirmation level
	ON received
	ON replicated
	ON durable
	ON visible

	Commit Scope kinds
	GROUP COMMIT
	GROUP COMMIT parameters
	ABORT ON parameters
	transaction_tracking settings
	conflict_resolution settings
	commit_decision settings

	CAMO
	Degrade On parameters

	LAG CONTROL
	LAG CONTROL parameters

	SYNCHRONOUS_COMMIT

	30.8 Replication set management
	bdr.create_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_replication_set
	Synopsis
	Parameters
	Notes

	bdr.drop_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_node_replication_sets
	Synopsis
	Parameters
	Notes

	30.9 Replication set membership
	bdr.replication_set_add_table
	Synopsis
	Parameters
	Notes

	bdr.replication_set_remove_table
	Synopsis
	Parameters
	Notes

	30.10 DDL replication filtering
	bdr.replication_set_add_ddl_filter
	Synopsis
	Parameters
	Notes
	Examples

	bdr.replication_set_remove_ddl_filter
	Synopsis
	Parameters
	Notes

	30.11 Testing and tuning commands
	pgd_bench
	Synopsis
	Options
	Setting mode
	Setting GUC variables
	Initialization options
	Options to select what to run
	Benchmarking options
	Common options:

	30.12 Global sequence management interfaces
	Sequence functions
	bdr.alter_sequence_set_kind
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_timeshard
	Synopsis
	Parameters
	Notes

	KSUUID v2 Functions
	bdr.gen_ksuuid_v2
	Synopsis
	Notes

	bdr.ksuuid_v2_cmp
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_ksuuid_v2
	Synopsis
	Parameters
	Notes

	KSUUID v1 functions
	bdr.gen_ksuuid
	Synopsis
	Notes

	bdr.uuid_v1_cmp
	Synopsis
	Notes
	Parameters

	bdr.extract_timestamp_from_ksuuid
	Synopsis
	Parameters
	Notes

	30.13 Autopartition
	bdr.autopartition
	Synopsis
	Parameters
	Examples

	bdr.drop_autopartition
	Parameters

	bdr.autopartition_wait_for_partitions
	Synopsis
	Parameters

	bdr.autopartition_wait_for_partitions_on_all_nodes
	Synopsis
	Parameters

	bdr.autopartition_find_partition
	Synopsis
	Parameters

	bdr.autopartition_enable
	Synopsis
	Parameters

	bdr.autopartition_disable
	Synopsis
	Parameters

	Internal functions
	bdr.autopartition_create_partition
	Synopsis
	Parameters
	Notes

	bdr.autopartition_drop_partition
	Synopsis
	Parameters
	Notes

	30.14 Stream triggers reference
	30.14.1 Stream triggers manipulation interfaces
	bdr.create_conflict_trigger
	Synopsis
	Parameters
	Notes

	bdr.create_transform_trigger
	Synopsis
	Parameters
	Notes

	bdr.drop_trigger
	Synopsis
	Parameters
	Notes

	30.14.2 Stream triggers row functions
	bdr.trigger_get_row
	Synopsis
	Parameters

	bdr.trigger_get_committs
	Synopsis
	Parameters

	bdr.trigger_get_xid
	Synopsis
	Parameters

	bdr.trigger_get_type
	Synopsis

	bdr.trigger_get_conflict_type
	Synopsis

	bdr.trigger_get_origin_node_id
	Synopsis
	Parameters

	bdr.ri_fkey_on_del_trigger
	Synopsis

	30.14.3 Stream triggers row variables
	TG_NAME
	TG_WHEN
	TG_LEVEL
	TG_OP
	TG_RELID
	TG_TABLE_NAME
	TG_TABLE_SCHEMA
	TG_NARGS
	TG_ARGV[]

	30.15 Internal catalogs and views
	bdr.ddl_epoch
	bdr.ddl_epoch columns

	bdr.event_history
	bdr.event_history columns

	bdr.event_summary
	bdr.node_config
	bdr.node_config columns

	bdr.node_group_config
	bdr.node_group_config columns

	bdr.node_group_routing_config_summary
	bdr.node_group_routing_info
	bdr.node_group_routing_info columns

	bdr.node_group_routing_summary
	bdr.node_routing_config_summary
	bdr.proxy_config
	bdr.proxy_config columns

	bdr.proxy_config_summary
	bdr.sequence_kind
	bdr.sequence_kind columns

	30.16 Internal system functions
	General internal functions
	bdr.bdr_get_commit_decisions
	Synopsis

	bdr.bdr_track_commit_decision
	Synopsis

	bdr.consensus_kv_fetch
	Synopsis
	Parameters
	Notes

	bdr.consensus_kv_store
	Synopsis
	Parameters
	Notes

	bdr.decode_message_payload
	bdr.decode_message_response_payload
	bdr.difference_fix_origin_create
	bdr.difference_fix_session_reset
	Synopsis

	bdr.difference_fix_session_setup
	Synopsis

	bdr.difference_fix_xact_set_avoid_conflict
	Synopsis

	bdr.drop_node
	Synopsis
	Parameters
	Notes

	bdr.get_global_locks
	bdr.get_node_conflict_resolvers
	bdr.get_slot_flush_timestamp
	bdr.internal_alter_sequence_set_kind
	bdr.internal_replication_set_add_table
	bdr.internal_replication_set_remove_table
	bdr.internal_submit_join_request
	bdr.isolation_test_session_is_blocked
	bdr.local_node_info
	bdr.msgb_connect
	bdr.msgb_deliver_message
	bdr.node_catchup_state_name
	Synopsis
	Parameters

	bdr.node_kind_name
	bdr.peer_state_name
	bdr.pg_xact_origin
	Synopsis
	Parameters

	bdr.request_replay_progress_update
	bdr.reset_relation_stats
	bdr.reset_subscription_stats
	bdr.resynchronize_table_from_node
	Synopsis
	Parameters
	Notes

	bdr.seq_currval
	bdr.seq_lastval
	bdr.seq_nextval
	bdr.show_subscription_status
	bdr.show_workers
	Synopsis

	bdr.show_writers

	Task Manager Functions
	bdr.taskmgr_set_leader
	Synopsis

	bdr.taskmgr_get_last_completed_workitem
	Synopsis

	bdr.taskmgr_work_queue_check_status
	Synopsis
	Parameters
	Notes

